简单易学的机器学习算法—SVD奇异值分解 一、SVD奇异值分解的定义 假设M是一个的矩阵,如果存在一个分解: 其中的酉矩阵,的半正定对角矩阵,的共轭转置矩阵,且为的酉矩阵。这样的分解称为M的奇异值分解,对 ...
2017-03-24简单易学的机器学习算法—线性回归(2) 一、基本线性回归模型的抽象 在基本的线性回归中(可见简单易学的机器学习算法—线性回归(1)),对于一个线性回归为题,我们得到一个线性方程组: 在上一篇中我们是构建平 ...
2017-03-24简单易学的机器学习算法—线性回归(1) 一、线性回归的概念 对连续型数据做出预测属于回归问题。举个简单的例子:例如我们在知道房屋面积(HouseArea)和卧室的数量(Bedrooms)的情况下要求房屋的价格(Price)。通 ...
2017-03-24数据分析产品的下一个进化:基于无埋点的有埋点 一直以来,人们把大数据和埋点技术紧紧捆绑在一起,大数据时代也被称为埋点时代。技术发展,更新更快的无埋点技术横空出世。那么埋点技术是不是就此被判了死刑, ...
2017-03-24优化算法—人工蜂群算法(ABC) 一、人工蜂群算法的介绍 人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据 ...
2017-03-23简单易学的机器学习算法—K-Means算法 一、聚类算法的简介 聚类算法是一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。聚类算法与分类算法最大的区别是:聚类算法是无监督的学习算法,而 ...
2017-03-23简单易学的机器学习算法—Logistic回归 一、Logistic回归的概述 Logistic回归是一种简单的分类算法,提到“回归”,很多人可能觉得与分类没什么关系,Logistic回归通过对数据分类边界的拟合来实现分类。而“回 ...
2017-03-23简单易学的机器学习算法—朴素贝叶斯 一、贝叶斯定理 1、条件概率 条件概率是指在事件B发生的情况下,事件A发生的概率,用表示。 2、全概率公式 含义是:如果和构成样本空间 ...
2017-03-23数据分析技术:事后多重比较的方法介绍;了解各种方法的原理才能做到“准确分析” 基础准备 均值比较的假设检验是数据分析最重要的分析内容之一,根据参与比较的样本数量不同,使用的假设检验方法也不同,做 ...
2017-03-23简单易学的机器学习算法—极限学习机(ELM) 一、极限学习机的概念 极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。 ELM最大的特点是对于传统的神经网络,尤其是单隐 ...
2017-03-23简单易学的机器学习算法—决策树之ID3算法 一、决策树分类算法概述 决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集 (数据集) 其中,第一列和第二列为属性( ...
2017-03-22简单易学的机器学习算法—神经网络之BP神经网络 一、BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经 ...
2017-03-22简单易学的机器学习算法—分类回归树CART 分类回归树(Classification and Regression Tree,CART)是一种典型的决策树算法,CART算法不仅可以应用于分类问题,而且可以用于回归问题。 一、树回归的概念 对于 ...
2017-03-22优化算法—粒子群算法(PSO) 一、粒子群算法的概述 粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食 ...
2017-03-22数据结构和算法—用动态规划求解最短路径问题 在利用动态规划求解的过程中值得注意的就是是否包含最优子结构,简单来讲就是一个问题的最优解是不是包含着子问题的最优解。利用求解子问题的最优解最后得到整个问 ...
2017-03-22数据结构和算法—动态规划 我一直最想做的就是机器学习,所以也都是在报机器学习的岗位,在BAT三家公司中,其实还是要讲百度吧,因为阿里在一面的时候就挂了,给我的理由是我投错了岗位(据面试官讲我应该去投算 ...
2017-03-22简单易学的机器学习算法—Rosenblatt感知机的对偶解法 一、Rosenblatt感知机回顾 在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分 ...
2017-03-21简单易学的机器学习算法—基于密度的聚类算法DBSCAN 一、基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别。 基于密度的 ...
2017-03-21论文中的机器学习算法——基于密度峰值的聚类算法 下面还是主要来谈谈论文的主要思想。 算法的主要思想思想 在聚类算法中主要有这样几种: 划分的方法,如K-Means 层次的方 ...
2017-03-21简单易学的机器学习算法—非线性支持向量机 一、回顾 介绍了支持向量机的基本概念,线性可分支持向量机的原理以及线性支持向量机的原理,线性可分支持向量机是线性支持向量机的基础。对于线性支持向量机,选择 ...
2017-03-21Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08