京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据结构和算法—动态规划
我一直最想做的就是机器学习,所以也都是在报机器学习的岗位,在BAT三家公司中,其实还是要讲百度吧,因为阿里在一面的时候就挂了,给我的理由是我投错了岗位(据面试官讲我应该去投算法岗,但我投的是数据挖掘),后来我在想,其实还就是我没能达到她的语气要求;腾讯就别讲了,连面试都没收到(据说这个岗位不招我们学校的),这可能就是个猜测吧。重点说说百度的笔试和面试吧,单纯从技术上来讲,因为我在做机器学习嘛,百度还是我最心仪的公司。这次百度的招聘分为笔试+面试(三个技术面+Hr面),我挂在了最后一个技术面上,先来说说武汉的笔试吧,当然笔试题我做得还是蛮开心的,因为最后一道证明题可以说还是我平时的强项吧,面试中,前两面都还好,面得比较基础,包括基本的数据结构,算法,然后是机器学习的算法理解,不同算法之间的对比,这也正是我平时做的一些工作,这样的过程还是蛮舒服的,整个流程下来,我觉得问题不是很大。最后一关就是很多实际的项目问题,由于我自己平时项目较少,加之自己的导师不是做机器学习的,没做过具体的机器学习相关项目,只是将算法学习的比较全。
我写以上的东西也是给找工作的朋友一个建议,也是给自己一个醒目的教训,多去实践,所以这段时间我还是会努力更新我的博客,当然不完全是前面的机器学习算法,现在将包括更多的东西,我会把我现在在做的项目也慢慢更新上来,然后又基本的算法的学习材料,希望关注我博客的朋友,大家一起努力,我不是科班出身,但是我希望大家不吝赐教,有你的帮助我会成长的更快。
好了,就写到这吧。我想还是从一些算法开始入手吧,今天还是来更新一篇动态规划的文章。
一、动态规划的思想
动态规划(dynamic programming)是一种算法设计的思想,主要是将一个问题划分成几个更小的问题,并对这样更小的问题进行求解,最终得到整个问题的解。有人在想这样的方式和分治法的求解很像。
动态规划:各个子问题不是独立的,他们包含了公共子问题
分治法:一个大问题是被划分成一些独立的子问题,通过递归地求解子问题最终得到整个问题的解
在动态规划法中,与其对交叠的子问题一次一次求解,不如对每个较小的子问题只求解一次并把结果记录在表中,这样就能从表中得到原始问题的解。举个简单的例子,对于菲波那切数列来说:

对于这样的递推式,可以把一个复杂的问题分解成几个非独立的子问题,我们可以采用的方式是记录每一组值,如斐波那契数列的值依次是0,1,1,2,3,5,...。而不需要重复去计算。
二、用动态规划求解二项式系数
二项式系数问题是一个求解
的问题。我们有如下的递推式:

要计算
的值,我们需要记录
到
之间的值。动态规划的核心思想就是要找到这样的递推式,然后构建这样的存储空间去记录中间的值,避免重复计算。最简单的方式是利用数组去记录。数据分析师培训
如上的问题可以用下面的Java代码实现:
[java] view plain copy 在CODE上查看代码片派生到我的代码片
package org.algorithm.dynamicprogramming;
/**
* 利用动态规划的思想去求解二项式系数的问题
*
* @author dell
*
*/
public class CalculateDemo {
/**
* 用动态规划计算C(n,k)
*
* @param n为二项式的参数
* @param k为二项式的参数
* @return C(n,k)的值
*/
public static int calBinomial(int n, int k) {
int C[][] = new int[n+1][k+1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= minValue(i, k); j++) {
if (j == 0 || j == i) {
C[i][j] = 1;
} else {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}
}
return C[n][k];
}
// 返回较小的值
public static int minValue(int i, int k) {
return (i <= k ? i : k);
}
public static void main(String args[]) {
int n = 10;
int k = 5;
System.out.println(calBinomial(n, k));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23