京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据结构和算法—动态规划
我一直最想做的就是机器学习,所以也都是在报机器学习的岗位,在BAT三家公司中,其实还是要讲百度吧,因为阿里在一面的时候就挂了,给我的理由是我投错了岗位(据面试官讲我应该去投算法岗,但我投的是数据挖掘),后来我在想,其实还就是我没能达到她的语气要求;腾讯就别讲了,连面试都没收到(据说这个岗位不招我们学校的),这可能就是个猜测吧。重点说说百度的笔试和面试吧,单纯从技术上来讲,因为我在做机器学习嘛,百度还是我最心仪的公司。这次百度的招聘分为笔试+面试(三个技术面+Hr面),我挂在了最后一个技术面上,先来说说武汉的笔试吧,当然笔试题我做得还是蛮开心的,因为最后一道证明题可以说还是我平时的强项吧,面试中,前两面都还好,面得比较基础,包括基本的数据结构,算法,然后是机器学习的算法理解,不同算法之间的对比,这也正是我平时做的一些工作,这样的过程还是蛮舒服的,整个流程下来,我觉得问题不是很大。最后一关就是很多实际的项目问题,由于我自己平时项目较少,加之自己的导师不是做机器学习的,没做过具体的机器学习相关项目,只是将算法学习的比较全。
我写以上的东西也是给找工作的朋友一个建议,也是给自己一个醒目的教训,多去实践,所以这段时间我还是会努力更新我的博客,当然不完全是前面的机器学习算法,现在将包括更多的东西,我会把我现在在做的项目也慢慢更新上来,然后又基本的算法的学习材料,希望关注我博客的朋友,大家一起努力,我不是科班出身,但是我希望大家不吝赐教,有你的帮助我会成长的更快。
好了,就写到这吧。我想还是从一些算法开始入手吧,今天还是来更新一篇动态规划的文章。
一、动态规划的思想
动态规划(dynamic programming)是一种算法设计的思想,主要是将一个问题划分成几个更小的问题,并对这样更小的问题进行求解,最终得到整个问题的解。有人在想这样的方式和分治法的求解很像。
动态规划:各个子问题不是独立的,他们包含了公共子问题
分治法:一个大问题是被划分成一些独立的子问题,通过递归地求解子问题最终得到整个问题的解
在动态规划法中,与其对交叠的子问题一次一次求解,不如对每个较小的子问题只求解一次并把结果记录在表中,这样就能从表中得到原始问题的解。举个简单的例子,对于菲波那切数列来说:

对于这样的递推式,可以把一个复杂的问题分解成几个非独立的子问题,我们可以采用的方式是记录每一组值,如斐波那契数列的值依次是0,1,1,2,3,5,...。而不需要重复去计算。
二、用动态规划求解二项式系数
二项式系数问题是一个求解
的问题。我们有如下的递推式:

要计算
的值,我们需要记录
到
之间的值。动态规划的核心思想就是要找到这样的递推式,然后构建这样的存储空间去记录中间的值,避免重复计算。最简单的方式是利用数组去记录。数据分析师培训
如上的问题可以用下面的Java代码实现:
[java] view plain copy 在CODE上查看代码片派生到我的代码片
package org.algorithm.dynamicprogramming;
/**
* 利用动态规划的思想去求解二项式系数的问题
*
* @author dell
*
*/
public class CalculateDemo {
/**
* 用动态规划计算C(n,k)
*
* @param n为二项式的参数
* @param k为二项式的参数
* @return C(n,k)的值
*/
public static int calBinomial(int n, int k) {
int C[][] = new int[n+1][k+1];
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= minValue(i, k); j++) {
if (j == 0 || j == i) {
C[i][j] = 1;
} else {
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
}
}
}
return C[n][k];
}
// 返回较小的值
public static int minValue(int i, int k) {
return (i <= k ? i : k);
}
public static void main(String args[]) {
int n = 10;
int k = 5;
System.out.println(calBinomial(n, k));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06