现在大数据成为一个热门话题, 然而无论是网页、产品信息、车辆的功能、文本、病例,还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话, 就能够理解为什么图论在将来能够为人们的数据分析提供思路。
今天, 我们对数据的很多分析和研究方式已经被图论深深地影响了。 而在未来, 利用图论, 我们能够进一步提高我们对数据的理解能力。 构建和分析图论模型将使得我们能够自动获取答案。当我们把数据自己联系起来的时候, 数据中隐藏的答案会自己出现。现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。利用图论, 我们将能够进一步提高我们对数据的理解能力,同时构建和分析图论模型将使得我们能够自动获取答案。
如今, Google已经成为了很多人日常生活中不可或缺的一部分,这个搜索引擎巨头通过围绕在它的核心能力也就是对互联网的索引, 把一系列服务整合起来提供给用户。
Google的网络爬虫和PageRank算法使得人们搜索网络的方式发生了革命性的变化。 通过对网页链接数量和重要性的分类, Google能够比竞争对手更快地提供更加相关的信息。
网站和网站之间的链接组成了一个图, 这不是我们通常所说的可视化的图, 而是一种用来表示每个网页如何与其他网页发生关系的模型。
PageRank算法就是采用这种模型来判断一个网页的重要性的。一个网页拥有越多的外部链接, 它的重要性就可能越高, 如果一个网页被更多的权威信息源所引用, 那么这个网页的重要性也就越高。 Google搜索引擎的搜索结果一般来说比竞争对手要更快更好, 就是因为它的算法涵盖了互联网页面之间的绝大部分链接。
把类似的想法应用到其他数据上, 来分析数据之间的关联, 也能够揭示一些数据背后的本质。 告诉我们哪些是相关的, 哪些是重要的。
图论就是研究数据联系的模式
要理解我们如何从数据中得出答案, 我们需要了解我们传统上是如何与数据打交道的。几乎所有的试图从数据中寻找答案的过程都是通过搜索实现的。
搜索首先总是从提出问题开始的。 我们把已知的与数据联系的越好, 我们提出的问题就越可能找到答案。 比如说, 如果你找不到你的钥匙,可能你会问:”我的钥匙在哪里?”。 不过, 这可不是一个容易得到答案的问题。它太宽泛了。 而如果你问:“我的钥匙是不是掉在收银台了?” 这个问题比第一个问题要具体一些。 如果你的钥匙在收银台, 那这个问题就是一个好的问题。如果不是的话, 这个问题也不是个好问题。
对数据库的查询与上述方式类似。 要想得到你想要的结果, 你需要构造一个与你的数据相关的查询条件。 你可以使用的查询语句不计其数, 但是只有少部分能够让你得到你需要的答案。
这样的情况才是数据科学的真正难点所在, 也是为什么好的分析师凤毛麟角的原因。 最好的数据科学家是那些既懂得数据, 又懂得那些提出正确问题的人。
如果把互联网看成数据集的话, 那么搜索引擎就是你的查询工具。
几十年来, 搜索引擎都在抓取网络信息, 索引网页以便能够被搜索到。 通过构造不同的搜索条件, 用户可以得到不同的结果。 搜索引擎服务商们不断的改进他们的产品。然而搜索引擎的真正创新出现在2000年左右。
当时, Google的PageRank算法通过对每个链接以及其链接的内容进行建模。通过图论建模, Google把网页之间的联系进行了量化, 以帮助用户更快地获得相关的结果。 这一算法使用了网页之间的关系来提高搜索结果的质量。 而无论哪种搜索引擎, 用体提供的搜索条件描述性越好, 就越能够得到好的结果。
你的搜索条件与Google的PageRank算法之间建立了一个联系。而Google通过图论建模,建立了一个你的搜索条件与相关页面之间的联系。 如果没有关于相关页面和链接的模型, Google就需要更精确的搜索条件才能得到满意的结果。 然而, 即便是采用更先进的搜索技术, 现在的数据问题也会使得构造一个正确的查询条件变得困难。
现在大数据成为一个热门话题, 然而无论是网页, 产品信息, 车辆的功能, 文本, 病例还是气象等数据, 对数据的理解的第一步就是要理解数据之间的关联。认同这一点的话, 就能够理解为什么图论在将来能够为人们的数据分析提供思路。
今天, 我们对数据的很多分析和研究方式已经被图论深深地影响了。 而在未来, 利用图论, 我们能够进一步提高我们对数据的理解能力。 构建和分析图论模型将使得我们能够自动获取答案。当我们把数据自己联系起来的时候, 数据中隐藏的答案会自己出现。
数据分析咨询请扫描二维码
数据分析就业挑战与应对策略 在当今社会,数据分析专业的就业并非一帆风顺。竞争激烈,技能要求高,许多人发现找工作并不容易。 ...
2024-12-02在追求成为一名出色的数据分析师的道路上,技术和软技能同样重要。技术技能涵盖了诸多方面,其中包括: 统计学知识 探索庞大数据 ...
2024-12-02从技术到软技能:数据分析的全貌 学习数据分析是一项综合性任务,涉及多方面技能。这些技能主要可以划分为技术技能和软技能两大 ...
2024-12-02作为初学者踏入数据分析领域,掌握一系列关键能力至关重要。这些技能不仅涵盖基础工具的使用,还包括深入的分析方法、对业务的理 ...
2024-12-02欢迎探寻数据分析的奇妙世界!对于初学者而言,融会贯通数据领域的复杂性可能有些令人望而却步。然而,不必惊慌,因为我们将一起 ...
2024-12-02欢迎踏上学习数据分析的旅程!数据已经渗透到我们生活的方方面面,成为决策和创新的关键。无论是提升工作效率、探索数据领域还是 ...
2024-12-02欢迎踏上数据分析的学习之旅!无论是为了提升工作效率,转行成为数据分析师,还是满足对数据分析的好奇心,掌握数据分析技能都将 ...
2024-12-02在当今数据驱动的世界中,选择合适的数据分析工具至关重要。不同工具在功能和应用场景上存在显著差异,影响着数据处理和分析的效 ...
2024-12-02选择适合你的数据分析工具 在进行数据分析时,选择合适的工具至关重要。不同工具有各自的特点和适用场景,因此了解每种工具的优 ...
2024-12-021. 技术驱动与市场需求 数据分析领域正随着技术的不断革新而迎来蓬勃发展。大数据、人工智能(AI)、机器学习(ML)等前沿技术的 ...
2024-12-02在当今数字化浪潮中,数据分析扮演着关键角色。数据分析能力的提升引领了行业趋势,深刻影响着各个领域:从技术进步到市场需求增 ...
2024-12-02如何用Excel提升数据分析能力 在数字时代中,数据是无处不在的。对于从业者而言,掌握数据分析的技能至关重要。而在众多数据处理 ...
2024-12-02初探数据分析世界 数据分析是当今数字化时代的核心。无论你是想拓展专业技能还是仅仅对数据分析感兴趣,掌握各种工具至关重要。 ...
2024-12-02从 Excel 到 SQL:打造数据分析之路 数据分析的世界如同辽阔的大海,每个人都可以在其中找到属于自己的航道。无论你是初出茅庐的 ...
2024-12-02在当今信息爆炸的时代,数据已经成为企业决策的关键驱动力。然而,仅有海量数据并不足以带来洞察和价值。数据分析能力的提升是关 ...
2024-12-02重要能力要素 数据分析能力的提升是一个综合性过程,涉及多方面技能和知识。对于想要在数据领域脱颖而出的人来说,以下关键要素 ...
2024-12-02在当今信息爆炸的时代,数据成为企业决策的关键驱动力。成为一名优秀的数据分析师,并非仅仅掌握数据的本质,更需要具备多方面的 ...
2024-12-02作为数据分析师,踏入这个令人兴奋且快速发展的领域既激动人心又具挑战性。要在这个领域取得成功并不仅仅意味着掌握数据分析工具 ...
2024-12-02在当今数字化浪潮中,数据分析师扮演着至关重要的角色。随着市场需求不断攀升,这一职业领域展现出了令人鼓舞的增长态势。然而, ...
2024-12-02数据分析领域在近年来蓬勃发展,成为许多求职者和职业转型者的首选。市场需求不断增长,薪资水平较高,同时职业发展路径多样化。 ...
2024-12-02