
简单易学的机器学习算法—Rosenblatt感知机的对偶解法
一、Rosenblatt感知机回顾
在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分问题的二分类算法。通过构造分离超平面将正类和负类区分开。构造了如下的输入空间到输出空间的函数:
其中,w为权重,b为偏置。为符号函数:
求解这个函数的重点就是求解函数中的参数:和。Rosenblatt感知机通过构造损失函数,并求得使得这样的损失函数达到最小时的w和b。
其中,为:
这里的为所有误分类的点的集合。我们的目标是求得损失函数的最小值:。
通过梯度下降法(详细请见“简单易学的机器学习算法——Rosenblatt感知机”),我们得到了w和b的更新公式:
其中,为学习率。
二、Rosenblatt感知机的对偶形式
对偶形式的基本想法是,将w和b表示为实例的线性组合的形式,通过求解其系数而求得
。
通过上面的的更新公式,我们发现,
是一个累加的过程。如果令
,则
可以表示为:
其中,。
此时的感知机模型就变为:
三、算法流程
初始化,
选择误分类数据点,即,更新a和b
直到没有误分类的点,否则重复步骤2
计算出
四、实验的仿真
利用博文“简单易学的机器学习算法——Rosenblatt感知机”中的数据集,原始数据集如下图所示:
(原始数据点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Rosenblatt感知机的对偶解法
clear all;
clc;
%读入数据
x=[3,3;4,3;1,1];
y=[1;1;-1];
[m,n] = size(x);%取得数据集的大小
%% 画出原始的点
hold on
axis([0 5 0 5]);%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等
for i = 1:m
plot(x(i,1),x(i,2),'.');
end
%% 初始化
alpha = zeros(1,m);
b = 0;
yita = 1;%学习率
gram = zeros(m,m);
%% 计算Gram矩阵
for i = 1:m
for j = 1:m
gram(i,j)=x(i,:)*x(j,:)';
end
end
%% 更新
for i = 1:m
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
end
end
% 要使得数据集中没有误分类的点
flag = 0;%标志位,用于标记有没有误分类的点
i = 1;
while flag~=1
while i <= 3
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%% 重新计算w和b
for i = 1:m
x_new(i,:) = x(i,:) * y(i);
end
w = alpha * x_new;
%% 画出分隔线
x_1 = (0:3);
y_1 = (-b-w(1,1)*x_1)./w(1,2);
plot(x_1,y_1);
最终的分离超平面:
(最终分离超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15