
简单易学的机器学习算法—Rosenblatt感知机的对偶解法
一、Rosenblatt感知机回顾
在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分问题的二分类算法。通过构造分离超平面将正类和负类区分开。构造了如下的输入空间到输出空间的函数:
其中,w为权重,b为偏置。为符号函数:
求解这个函数的重点就是求解函数中的参数:和。Rosenblatt感知机通过构造损失函数,并求得使得这样的损失函数达到最小时的w和b。
其中,为:
这里的为所有误分类的点的集合。我们的目标是求得损失函数的最小值:。
通过梯度下降法(详细请见“简单易学的机器学习算法——Rosenblatt感知机”),我们得到了w和b的更新公式:
其中,为学习率。
二、Rosenblatt感知机的对偶形式
对偶形式的基本想法是,将w和b表示为实例的线性组合的形式,通过求解其系数而求得
。
通过上面的的更新公式,我们发现,
是一个累加的过程。如果令
,则
可以表示为:
其中,。
此时的感知机模型就变为:
三、算法流程
初始化,
选择误分类数据点,即,更新a和b
直到没有误分类的点,否则重复步骤2
计算出
四、实验的仿真
利用博文“简单易学的机器学习算法——Rosenblatt感知机”中的数据集,原始数据集如下图所示:
(原始数据点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Rosenblatt感知机的对偶解法
clear all;
clc;
%读入数据
x=[3,3;4,3;1,1];
y=[1;1;-1];
[m,n] = size(x);%取得数据集的大小
%% 画出原始的点
hold on
axis([0 5 0 5]);%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等
for i = 1:m
plot(x(i,1),x(i,2),'.');
end
%% 初始化
alpha = zeros(1,m);
b = 0;
yita = 1;%学习率
gram = zeros(m,m);
%% 计算Gram矩阵
for i = 1:m
for j = 1:m
gram(i,j)=x(i,:)*x(j,:)';
end
end
%% 更新
for i = 1:m
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
end
end
% 要使得数据集中没有误分类的点
flag = 0;%标志位,用于标记有没有误分类的点
i = 1;
while flag~=1
while i <= 3
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%% 重新计算w和b
for i = 1:m
x_new(i,:) = x(i,:) * y(i);
end
w = alpha * x_new;
%% 画出分隔线
x_1 = (0:3);
y_1 = (-b-w(1,1)*x_1)./w(1,2);
plot(x_1,y_1);
最终的分离超平面:
(最终分离超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28