简单易学的机器学习算法—Rosenblatt感知机的对偶解法
一、Rosenblatt感知机回顾
在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分问题的二分类算法。通过构造分离超平面将正类和负类区分开。构造了如下的输入空间到输出空间的函数:
其中,w为权重,b为偏置。为符号函数:
求解这个函数的重点就是求解函数中的参数:和。Rosenblatt感知机通过构造损失函数,并求得使得这样的损失函数达到最小时的w和b。
其中,为:
这里的为所有误分类的点的集合。我们的目标是求得损失函数的最小值:。
通过梯度下降法(详细请见“简单易学的机器学习算法——Rosenblatt感知机”),我们得到了w和b的更新公式:
其中,为学习率。
二、Rosenblatt感知机的对偶形式
对偶形式的基本想法是,将w和b表示为实例的线性组合的形式,通过求解其系数而求得
。
通过上面的的更新公式,我们发现,
是一个累加的过程。如果令
,则
可以表示为:
其中,。
此时的感知机模型就变为:
三、算法流程
初始化,
选择误分类数据点,即,更新a和b
直到没有误分类的点,否则重复步骤2
计算出
四、实验的仿真
利用博文“简单易学的机器学习算法——Rosenblatt感知机”中的数据集,原始数据集如下图所示:
(原始数据点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Rosenblatt感知机的对偶解法
clear all;
clc;
%读入数据
x=[3,3;4,3;1,1];
y=[1;1;-1];
[m,n] = size(x);%取得数据集的大小
%% 画出原始的点
hold on
axis([0 5 0 5]);%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等
for i = 1:m
plot(x(i,1),x(i,2),'.');
end
%% 初始化
alpha = zeros(1,m);
b = 0;
yita = 1;%学习率
gram = zeros(m,m);
%% 计算Gram矩阵
for i = 1:m
for j = 1:m
gram(i,j)=x(i,:)*x(j,:)';
end
end
%% 更新
for i = 1:m
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
end
end
% 要使得数据集中没有误分类的点
flag = 0;%标志位,用于标记有没有误分类的点
i = 1;
while flag~=1
while i <= 3
tmp = 0;
for j = 1:m
tmp = tmp + alpha(j)*y(j)*gram(i,j);
end
tmp = tmp + b;
tmp = y(i)*tmp;
if tmp <= 0
alpha(i) = alpha(i)+yita;
b = b + y(i);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%% 重新计算w和b
for i = 1:m
x_new(i,:) = x(i,:) * y(i);
end
w = alpha * x_new;
%% 画出分隔线
x_1 = (0:3);
y_1 = (-b-w(1,1)*x_1)./w(1,2);
plot(x_1,y_1);
最终的分离超平面:
(最终分离超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03