京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、线性可分支持向量机的概念
线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可以得到分离超平面:
以及相应的分类决策函数

称为线性可分支持向量机。
二、线性可分支持向量机的原理
1、原始问题
支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面,这里的间隔最大化又称为硬间隔最大化。
我们可以把这样的问题抽象称为如下的数学表达式:

然而,函数间隔的取值并不影响最优化问题的解,我们可以取。则上述的优化问题就可以转化为:

可以将上述的最大化问题转化为最小化问题:

这样的问题是一个凸二次规划的问题。在线性可分情况下,训练数据集的样本点中的分离超平面距离最近的样本点的事例称为支持向量,即满足:
2、对偶算法
对于上述的带约束的优化问题,我们可以引进拉格朗日函数来解决:

这样,原始的问题就转化成一个极小极大问题:

再通过拉格朗日函数的对偶性,将上述的极小极大问题转换成一个极大极小问题:

此时,我们先求:
将拉格朗日函数
分别对和求偏导,并令其为0,则为

可得:
将上面两个等式带入拉格朗日函数
,得
再求
对a的极大,即:

将这样的最大化问题转化为最小化问题,即为

根据拉格朗日对偶性,通过对偶函数的最优解即可以求出原始函数的最优解:

其中,下标是使得
的样本。这里使得
的样本也称为支撑向量,与上述的满足
的样本本质上是一样的。
三、线性可分支持向量机的步骤
1、构造带约束的优化问题:

2、计算原始问题的最优解:

3、求分离超平面:

分类决策平面:

四、实验的仿真
我们通过二次规划来求解上述的带约束的优化问题,对于一个实例:(选自:《统计学习方法》)正例点为
,负例点为
,图像为:数据分析师培训

(正例点和负例点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 基于凸二次规划的线性可分支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
x_1 = X(:,1);
x_2 = X(:,2);
Y = [1,1,-1];%标签
m = size(X);
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = [-1;-1;-1];
A = Y;
b = 0;
lb = zeros(3,1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],A,b,lb);
% 求原问题的解
n = size(x);
w = x' * X;
for i = 1:n(1,1)
if x(i,1) > 0
b = Y(1,i)-w*X(i,:)'*Y(1,i);
break;
end
end
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:3
if Y(1,i) == 1
plot(x_1(i,:),x_2(i,:),'+r');
elseif Y(1,i) == -1
plot(x_1(i,:),x_2(i,:),'og');
end
end
axis([0,7,0,7])
hold off
分类的结果:

(最终的分类超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27