
一、线性可分支持向量机的概念
线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可以得到分离超平面:
以及相应的分类决策函数
称为线性可分支持向量机。
二、线性可分支持向量机的原理
1、原始问题
支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面,这里的间隔最大化又称为硬间隔最大化。
我们可以把这样的问题抽象称为如下的数学表达式:
然而,函数间隔的取值并不影响最优化问题的解,我们可以取。则上述的优化问题就可以转化为:
可以将上述的最大化问题转化为最小化问题:
这样的问题是一个凸二次规划的问题。在线性可分情况下,训练数据集的样本点中的分离超平面距离最近的样本点的事例称为支持向量,即满足:
2、对偶算法
对于上述的带约束的优化问题,我们可以引进拉格朗日函数来解决:
这样,原始的问题就转化成一个极小极大问题:
再通过拉格朗日函数的对偶性,将上述的极小极大问题转换成一个极大极小问题:
此时,我们先求:
将拉格朗日函数分别对和求偏导,并令其为0,则为
可得:
将上面两个等式带入拉格朗日函数,得
再求对a的极大,即:
将这样的最大化问题转化为最小化问题,即为
根据拉格朗日对偶性,通过对偶函数的最优解即可以求出原始函数的最优解:
其中,下标是使得的样本。这里使得
的样本也称为支撑向量,与上述的满足
的样本本质上是一样的。
三、线性可分支持向量机的步骤
1、构造带约束的优化问题:
2、计算原始问题的最优解:
3、求分离超平面:
分类决策平面:
四、实验的仿真
我们通过二次规划来求解上述的带约束的优化问题,对于一个实例:(选自:《统计学习方法》)正例点为,负例点为
,图像为:数据分析师培训
(正例点和负例点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 基于凸二次规划的线性可分支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
x_1 = X(:,1);
x_2 = X(:,2);
Y = [1,1,-1];%标签
m = size(X);
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = [-1;-1;-1];
A = Y;
b = 0;
lb = zeros(3,1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],A,b,lb);
% 求原问题的解
n = size(x);
w = x' * X;
for i = 1:n(1,1)
if x(i,1) > 0
b = Y(1,i)-w*X(i,:)'*Y(1,i);
break;
end
end
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:3
if Y(1,i) == 1
plot(x_1(i,:),x_2(i,:),'+r');
elseif Y(1,i) == -1
plot(x_1(i,:),x_2(i,:),'og');
end
end
axis([0,7,0,7])
hold off
分类的结果:
(最终的分类超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09