
一、线性可分支持向量机的概念
线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可以得到分离超平面:
以及相应的分类决策函数
称为线性可分支持向量机。
二、线性可分支持向量机的原理
1、原始问题
支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面,这里的间隔最大化又称为硬间隔最大化。
我们可以把这样的问题抽象称为如下的数学表达式:
然而,函数间隔的取值并不影响最优化问题的解,我们可以取。则上述的优化问题就可以转化为:
可以将上述的最大化问题转化为最小化问题:
这样的问题是一个凸二次规划的问题。在线性可分情况下,训练数据集的样本点中的分离超平面距离最近的样本点的事例称为支持向量,即满足:
2、对偶算法
对于上述的带约束的优化问题,我们可以引进拉格朗日函数来解决:
这样,原始的问题就转化成一个极小极大问题:
再通过拉格朗日函数的对偶性,将上述的极小极大问题转换成一个极大极小问题:
此时,我们先求:
将拉格朗日函数分别对和求偏导,并令其为0,则为
可得:
将上面两个等式带入拉格朗日函数,得
再求对a的极大,即:
将这样的最大化问题转化为最小化问题,即为
根据拉格朗日对偶性,通过对偶函数的最优解即可以求出原始函数的最优解:
其中,下标是使得的样本。这里使得
的样本也称为支撑向量,与上述的满足
的样本本质上是一样的。
三、线性可分支持向量机的步骤
1、构造带约束的优化问题:
2、计算原始问题的最优解:
3、求分离超平面:
分类决策平面:
四、实验的仿真
我们通过二次规划来求解上述的带约束的优化问题,对于一个实例:(选自:《统计学习方法》)正例点为,负例点为
,图像为:数据分析师培训
(正例点和负例点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 基于凸二次规划的线性可分支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
x_1 = X(:,1);
x_2 = X(:,2);
Y = [1,1,-1];%标签
m = size(X);
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = [-1;-1;-1];
A = Y;
b = 0;
lb = zeros(3,1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],A,b,lb);
% 求原问题的解
n = size(x);
w = x' * X;
for i = 1:n(1,1)
if x(i,1) > 0
b = Y(1,i)-w*X(i,:)'*Y(1,i);
break;
end
end
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:3
if Y(1,i) == 1
plot(x_1(i,:),x_2(i,:),'+r');
elseif Y(1,i) == -1
plot(x_1(i,:),x_2(i,:),'og');
end
end
axis([0,7,0,7])
hold off
分类的结果:
(最终的分类超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19