京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、线性可分支持向量机的概念
线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可以得到分离超平面:
以及相应的分类决策函数

称为线性可分支持向量机。
二、线性可分支持向量机的原理
1、原始问题
支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面,这里的间隔最大化又称为硬间隔最大化。
我们可以把这样的问题抽象称为如下的数学表达式:

然而,函数间隔的取值并不影响最优化问题的解,我们可以取。则上述的优化问题就可以转化为:

可以将上述的最大化问题转化为最小化问题:

这样的问题是一个凸二次规划的问题。在线性可分情况下,训练数据集的样本点中的分离超平面距离最近的样本点的事例称为支持向量,即满足:
2、对偶算法
对于上述的带约束的优化问题,我们可以引进拉格朗日函数来解决:

这样,原始的问题就转化成一个极小极大问题:

再通过拉格朗日函数的对偶性,将上述的极小极大问题转换成一个极大极小问题:

此时,我们先求:
将拉格朗日函数
分别对和求偏导,并令其为0,则为

可得:
将上面两个等式带入拉格朗日函数
,得
再求
对a的极大,即:

将这样的最大化问题转化为最小化问题,即为

根据拉格朗日对偶性,通过对偶函数的最优解即可以求出原始函数的最优解:

其中,下标是使得
的样本。这里使得
的样本也称为支撑向量,与上述的满足
的样本本质上是一样的。
三、线性可分支持向量机的步骤
1、构造带约束的优化问题:

2、计算原始问题的最优解:

3、求分离超平面:

分类决策平面:

四、实验的仿真
我们通过二次规划来求解上述的带约束的优化问题,对于一个实例:(选自:《统计学习方法》)正例点为
,负例点为
,图像为:数据分析师培训

(正例点和负例点)
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 基于凸二次规划的线性可分支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
x_1 = X(:,1);
x_2 = X(:,2);
Y = [1,1,-1];%标签
m = size(X);
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = [-1;-1;-1];
A = Y;
b = 0;
lb = zeros(3,1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],A,b,lb);
% 求原问题的解
n = size(x);
w = x' * X;
for i = 1:n(1,1)
if x(i,1) > 0
b = Y(1,i)-w*X(i,:)'*Y(1,i);
break;
end
end
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:3
if Y(1,i) == 1
plot(x_1(i,:),x_2(i,:),'+r');
elseif Y(1,i) == -1
plot(x_1(i,:),x_2(i,:),'og');
end
end
axis([0,7,0,7])
hold off
分类的结果:

(最终的分类超平面)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09