
简单易学的机器学习算法—K-Means算法
一、聚类算法的简介
聚类算法是一种典型的无监督学习算法,主要用于将相似的样本自动归到一个类别中。聚类算法与分类算法最大的区别是:聚类算法是无监督的学习算法,而分类算法属于监督的学习算法。
在聚类算法中根据样本之间的相似性,将样本划分到不同的类别中,对于不同的相似度计算方法,会得到不同的聚类结果,常用的相似度计算方法有欧式距离法。
二、K-Means算法的概述
基本K-Means算法的思想很简单,事先确定常数K,常数K意味着最终的聚类类别数,首先随机选定初始点为质心,并通过计算每一个样本与质心之间的相似度(这里为欧式距离),将样本点归到最相似的类中,接着,重新计算每个类的质心(即为类中心),重复这样的过程,知道质心不再改变,最终就确定了每个样本所属的类别以及每个类的质心。由于每次都要计算所有的样本与每一个质心之间的相似度,故在大规模的数据集上,K-Means算法的收敛速度比较慢。
三、K-Means算法的流程
初始化常数K,随机选取初始点为质心
重复计算一下过程,直到质心不再改变
计算样本与每个质心之间的相似度,将样本归类到最相似的类中
重新计算质心
输出最终的质心以及每个类
四、K-Means算法的实现
对数据集进行测试
原始数据集
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% input the data
A = load('testSet.txt');
%% 计算质心
centroids = kMeans(A, 4);
随机选取质心
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 取得随机中心
function [ centroids ] = randCent( dataSet, k )
[m,n] = size(dataSet);%取得列数
centroids = zeros(k, n);
for j = 1:n
minJ = min(dataSet(:,j));
rangeJ = max(dataSet(:,j))-min(dataSet(:,j));
centroids(:,j) = minJ+rand(k,1)*rangeJ;%产生区间上的随机数
end
end
计算相似性
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ dist ] = distence( vecA, vecB )
dist = (vecA-vecB)*(vecA-vecB)';%这里取欧式距离的平方
end
kMeans的主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% kMeans的核心程序,不断迭代求解聚类中心
function [ centroids ] = kMeans( dataSet, k )
[m,n] = size(dataSet);
%初始化聚类中心
centroids = randCent(dataSet, k);
subCenter = zeros(m,2);%做一个m*2的矩阵,第一列存储类别,第二列存储距离
change = 1;%判断是否改变
while change == 1
change = 0;
%对每一组数据计算距离
for i = 1:m
minDist = inf;
minIndex = 0;
for j = 1:k
dist= distence(dataSet(i,:), centroids(j,:));
if dist < minDist
minDist = dist;
minIndex = j;
end
end
if subCenter(i,1) ~= minIndex
change = 1;
subCenter(i,:)=[minIndex, minDist];
end
end
%对k类重新就算聚类中心
for j = 1:k
sum = zeros(1,n);
r = 0;%数量
for i = 1:m
if subCenter(i,1) == j
sum = sum + dataSet(i,:);
r = r+1;
end
end
centroids(j,:) = sum./r;
end
end
%% 完成作图
hold on
for i = 1:m
switch subCenter(i,1)
case 1
plot(dataSet(i,1), dataSet(i,2), '.b');
case 2
plot(dataSet(i,1), dataSet(i,2), '.g');
case 3
plot(dataSet(i,1), dataSet(i,2), '.r');
otherwise
plot(dataSet(i,1), dataSet(i,2), '.c');
end
end
plot(centroids(:,1),centroids(:,2),'+k');
end
最终的聚类结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12