京公网安备 11010802034615号
经营许可证编号:京B2-20210330
K-means算法原理与R语言实例
聚类是将相似对象归到同一个簇中的方法,这有点像全自动分类。簇内的对象越相似,聚类的效果越好。支持向量机、神经网络所讨论的分类问题都是有监督的学习方式,现在我们所介绍的聚类则是无监督的。其中,K均值(K-means)是最基本、最简单的聚类算法。
在K均值算法中,质心是定义聚类原型(也就是机器学习获得的结果)的核心。在介绍算法实施的具体过程中,我们将演示质心的计算方法。而且你将看到除了第一次的质心是被指定的以外,此后的质心都是经由计算均值而获得的。
首先,选择K个初始质心(这K个质心并不要求来自于样本数据集),其中K是用户指定的参数,也就是所期望的簇的个数。每个数据点都被收归到距其最近之质心的分类中,而同一个质心所收归的点集为一个簇。然后,根据本次分类的结果,更新每个簇的质心。重复上述数据点分类与质心变更步骤,直到簇内数据点不再改变,或者等价地说,直到质心不再改变。
基本的K均值算法描述如下:
根据数据点到新质心的距离,再次对数据集中的数据进行分类,如图13-2(c)所示。然后,算法根据新的分类来计算新的质心,并再次根据数据点到新质心的距离,对数据集中的数据进行分类。结果发现簇内数据点不再改变,所以算法执行结束,最终的聚类结果如图13-2(d)所示。
对于距离函数和质心类型的某些组合,算法总是收敛到一个解,即K均值到达一种状态,聚类结果和质心都不再改变。但为了避免过度迭代所导致的时间消耗,实践中,也常用一个较弱的条件替换掉“质心不再发生变化”这个条件。例如,使用“直到仅有1%的点改变簇”。
尽管K均值聚类比较简单,但它也的确相当有效。它的某些变种甚至更有效, 并且不太受初始化问题的影响。但K均值并不适合所有的数据类型。它不能处理非球形簇、不同尺寸和不同密度的簇,尽管指定足够大的簇个数时它通常可以发现纯子簇。对包含离群点的数据进行聚类时,K均值也有问题。在这种情况下,离群点检测和删除大有帮助。K均值的另一个问题是,它对初值的选择是敏感的,这说明不同初值的选择所导致的迭代次数可能相差很大。此外,K值的选择也是一个问题。显然,算法本身并不能自适应地判定数据集应该被划分成几个簇。最后,K均值仅限于具有质心(均值)概念的数据。一种相关的K中心点聚类技术没有这种限制。在K中心点聚类中,我们每次选择的不再是均值,而是中位数。这种算法实现的其他细节与K均值相差不大,我们不再赘述。
最后我们给出一个实际应用的例子。(代码采用我最喜欢用做数据挖掘的R语言来实现)
一组来自世界银行的数据统计了30个国家的两项指标,我们用如下代码读入文件并显示其中最开始的几行数据。可见,数据共分三列,其中第一列是国家的名字,该项与后面的聚类分析无关,我们更关心后面两列信息。第二列给出的该国第三产业增加值占GDP的比重,最后一列给出的是人口结构中年龄大于等于65岁的人口(也就是老龄人口)占总人口的比重。
为了方便后续处理,下面对读入的数据库进行一些必要的预处理,主要是调整列标签,以及用国名替换掉行标签(同时删除包含国名的列)。
如果你绘制这些数据的散点图,不难发现这些数据大致可以分为两组。事实上,数据中有一半的国家是OECD成员国,而另外一半则属于发展中国家(包括一些东盟国家、南亚国家和拉美国家)。所以我们可以采用下面的代码来进行K均值聚类分析。
对于聚类结果,限于篇幅我们仍然只列出了最开始的几条。但是如果用图形来显示的话,可能更易于接受。下面是示例代码。
上述代码的执行结果如图13-3所示。
另外一种与k-means非常类似的算法是k-median算法。此处已经无需再详细介绍k-中值算法的细节了,基本上和k-means一样,只是把所有均值出现的地方换成中值而已。这个思想看起好像很不起眼,但是你还别说,k-median算法还真的存在,而且是k-means算法的一个重要补充和改进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27