
机器学习优化算法之爬山算法小结
机器学习的项目,不可避免的需要补充一些优化算法,对于优化算法,爬山算法还是比较重要的.鉴于此,花了些时间仔细阅读了些爬山算法的paper.基于这些,做一些总结.
目录
1. 爬山算法简单描述
2. 爬山算法的主要算法
2.1 首选爬山算法
2.2 最陡爬山算法
2.3 随机重新开始爬山算法
2.4 模拟退火算法(也是爬山算法)
3. 实例求解
正文
爬山算法,是一种局部贪心的最优算法. 该算法的主要思想是:每次拿相邻点与当前点进行比对,取两者中较优者,作为爬坡的下一步.
举一个例子,求解下面表达式的最大值. 且假设 x,y均按为0.1间隔递增.
为了更好的描述,我们先使用pyhton画出该函数的图像:
图像的python代码:
1 # encoding:utf8
2 from matplotlib import pyplot as plt
3 import numpy as np
4 from mpl_toolkits.mplot3d import Axes3D
5
6
7 def func(X, Y, x_move=0, y_move=0):
8 def mul(X, Y, alis=1):
9 return alis * np.exp(-(X * X + Y * Y))
10
11 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
12
13
14 def show(X, Y):
15 fig = plt.figure()
16 ax = Axes3D(fig)
17 X, Y = np.meshgrid(X, Y)
18 Z = func(X, Y, 1.7, 1.7)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # 具体函数方法可用 help(function) 查看,如:help(ax.plot_surface)
25 # ax.scatter(X,Y,Z,c='r') #绘点
26 plt.show()
27
28 if __name__ == '__main__':
29 X = np.arange(-2, 4, 0.1)
30 Y = np.arange(-2, 4, 0.1)
31
32 show(X,Y)
View Code
对于上面这个问题,我们使用爬山算法该如何求解呢? 下面我们从爬山算法中的几种方式分别求解一下这个小题.
1. 首选爬山算法
依次寻找该点X的邻近点中首次出现的比点X价值高的点,并将该点作为爬山的点(此处说的价值高,在该题中是指Z或f(x,y)值较大). 依次循环,直至该点的邻近点中不再有比其大的点. 我们成为该点就是山的顶点,又称为最优点.
那么解题思路就有:
1. 随机选择一个登山的起点S(x0,y0,z0),并以此为起点开始登山.直至"登顶".
下面是我们实现的代码:
1 # encoding:utf8
2 from random import random, randint
3
4 from matplotlib import pyplot as plt
5 import numpy as np
6 from mpl_toolkits.mplot3d import Axes3D
7
8
9 def func(X, Y, x_move=1.7, y_move=1.7):
10 def mul(X, Y, alis=1):
11 return alis * np.exp(-(X * X + Y * Y))
12
13 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14
15
16 def show(X, Y, Z):
17 fig = plt.figure()
18 ax = Axes3D(fig)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # ax.scatter(X,Y,Z,c='r') #绘点
25 plt.show()
26
27
28 def drawPaht(X, Y, Z,px,py,pz):
29 fig = plt.figure()
30 ax = Axes3D(fig)
31 plt.title("demo_hill_climbing")
32 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
33 ax.set_xlabel('x label', color='r')
34 ax.set_ylabel('y label', color='g')
35 ax.set_zlabel('z label', color='b')
36 ax.plot(px,py,pz,'r.') #绘点
37 plt.show()
38
39
40 def hill_climb(X, Y):
41 global_X = []
42 global_Y = []
43
44 len_x = len(X)
45 len_y = len(Y)
46 # 随机登山点
47 st_x = randint(0, len_x-1)
48 st_y = randint(0, len_y-1)
49
50 def argmax(stx, sty, alisx=0, alisy=0):
51 cur = func(X[0][st_x], Y[st_y][0])
52 next = func(X[0][st_x + alisx], Y[st_y + alisy][0])
53
54 return cur < next and True or False
55
56 while (len_x > st_x >= 0) or (len_y > st_y >= 0):
57 if st_x + 1 < len_x and argmax(st_x, st_y, 1):
58 st_x += 1
59 elif st_y + 1 < len_x and argmax(st_x, st_y, 0, 1):
60 st_y += 1
61 elif st_x >= 1 and argmax(st_x, st_y, -1):
62 st_x -= 1
63 elif st_y >= 1 and argmax(st_x, st_y, 0, -1):
64 st_y -= 1
65 else:
66 break
67 global_X.append(X[0][st_x])
68 global_Y.append(Y[st_y][0])
69 return global_X, global_Y, func(X[0][st_x], Y[st_y][0])
70
71
72 if __name__ == '__main__':
73 X = np.arange(-2, 4, 0.1)
74 Y = np.arange(-2, 4, 0.1)
75 X, Y = np.meshgrid(X, Y)
76 Z = func(X, Y, 1.7, 1.7)
77 px, py, maxhill = hill_climb(X, Y)
78 print px,py,maxhill
79 drawPaht(X, Y, Z,px,py,func(np.array(px), np.array(py), 1.7, 1.7))
View Code
对比几次运行的结果:
从上图中,我们可以比较清楚的观察到,首选爬山算法的缺陷.
2.那么最陡爬山算法呢?
简单描述:
最陡爬山算法是在首选爬山算法上的一种改良,它规定每次选取邻近点价值最大的那个点作为爬上的点.
下面我们来实现一下它:
1 # encoding:utf8
2 from random import random, randint
3
4 from matplotlib import pyplot as plt
5 import numpy as np
6 from mpl_toolkits.mplot3d import Axes3D
7
8
9 def func(X, Y, x_move=1.7, y_move=1.7):
10 def mul(X, Y, alis=1):
11 return alis * np.exp(-(X * X + Y * Y))
12
13 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14
15
16 def show(X, Y, Z):
17 fig = plt.figure()
18 ax = Axes3D(fig)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # ax.scatter(X,Y,Z,c='r') #绘点
25 plt.show()
26
27
28 def drawPaht(X, Y, Z, px, py, pz):
29 fig = plt.figure()
30 ax = Axes3D(fig)
31 plt.title("demo_hill_climbing")
32 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
33 ax.set_xlabel('x label', color='r')
34 ax.set_ylabel('y label', color='g')
35 ax.set_zlabel('z label', color='b')
36 ax.plot(px, py, pz, 'r.') # 绘点
37 plt.show()
38
39
40 def hill_climb(X, Y):
41 global_X = []
42 global_Y = []
43
44 len_x = len(X)
45 len_y = len(Y)
46 # 随机登山点
47 st_x = randint(0, len_x - 1)
48 st_y = randint(0, len_y - 1)
49
50 def argmax(stx, sty, alisx, alisy):
51 cur = func(X[0][stx], Y[sty][0])
52 next = func(X[0][alisx], Y[alisy][0])
53 if cur < next:
54 return alisx, alisy
55 return stx, sty
56 #return cur < next and alisx, alisy or stx, sty
57
58 tmp_x = st_x
59 tmp_y = st_y
60 while (len_x > st_x >= 0) or (len_y > st_y >= 0):
61 if st_x + 1 < len_x:
62 tmp_x, tmp_y = argmax(tmp_x, tmp_y, (st_x + 1), st_y)
63
64 if st_x >= 1:
65 tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x - 1, st_y)
66
67 if st_y + 1 < len_x:
68 tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x, st_y + 1)
69
70 if st_y >= 1:
71 tmp_x, tmp_y = argmax(tmp_x, tmp_y, st_x, st_y - 1)
72
73 if tmp_x != st_x or tmp_y != st_y:
74 st_x = tmp_x
75 st_y = tmp_y
76 else:
77 break
78 global_X.append(X[0][st_x])
79 global_Y.append(Y[st_y][0])
80 return global_X, global_Y, func(X[0][st_x], Y[st_y][0])
81
82
83 if __name__ == '__main__':
84 X = np.arange(-2, 4, 0.1)
85 Y = np.arange(-2, 4, 0.1)
86 X, Y = np.meshgrid(X, Y)
87 Z = func(X, Y, 1.7, 1.7)
88 px, py, maxhill = hill_climb(X, Y)
89 print px, py, maxhill
90 drawPaht(X, Y, Z, px, py, func(np.array(px), np.array(py), 1.7, 1.7))
View Code
从这个结果来看,因为范围扩大了一点,所以效果会好一点点,当依旧是一个局部最优算法.
3.随机重新开始爬山算法呢?
简单的描述:
随机重新开始爬山算法是基于最陡爬山算法,其实就是加一个达到全局最优解的条件,如果满足该条件,就结束运算,反之则无限次重复运算最陡爬山算法.
由于此题,并没有结束的特征条件,我们这里就不给予实现.
4.模拟退火算法
简单描述:
(1)随机挑选一个单元k,并给它一个随机的位移,求出系统因此而产生的能量变化ΔEk。
(2)若ΔEk?0,该位移可采纳,而变化后的系统状态可作为下次变化的起点;
若ΔEk>0,位移后的状态可采纳的概率为
式中T为温度,然后从(0,1)区间均匀分布的随机数中挑选一个数R,若R<Pk,则将变化后的状态作为下次的起点;否则,将变化前的状态作为下次的起点。 数据分析培训
(3)转第(1)步继续执行,知道达到平衡状态为止。
代码实现为:
1 # encoding:utf8
2 from random import random, randint
3
4 from matplotlib import pyplot as plt
5 import numpy as np
6 from mpl_toolkits.mplot3d import Axes3D
7
8
9 def func(X, Y, x_move=1.7, y_move=1.7):
10 def mul(X, Y, alis=1):
11 return alis * np.exp(-(X * X + Y * Y))
12
13 return mul(X, Y) + mul(X - x_move, Y - y_move, 2)
14
15
16 def show(X, Y, Z):
17 fig = plt.figure()
18 ax = Axes3D(fig)
19 plt.title("demo_hill_climbing")
20 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow', )
21 ax.set_xlabel('x label', color='r')
22 ax.set_ylabel('y label', color='g')
23 ax.set_zlabel('z label', color='b')
24 # ax.scatter(X,Y,Z,c='r') #绘点
25 plt.show()
26
27
28 def drawPaht(X, Y, Z, px, py, pz):
29 fig = plt.figure()
30 ax = Axes3D(fig)
31 plt.title("demo_hill_climbing")
32 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, color='b' )
33 ax.set_xlabel('x label', color='r')
34 ax.set_ylabel('y label', color='g')
35 ax.set_zlabel('z label', color='b')
36 ax.plot(px, py, pz, 'r.') # 绘点
37 plt.show()
38
39
40 def hill_climb(X, Y):
41 global_X = []
42 global_Y = []
43 # 初始温度
44 temperature = 105.5
45 # 温度下降的比率
46 delta = 0.98
47 # 温度精确度
48 tmin = 1e-10
49
50 len_x = len(X)
51 len_y = len(Y)
52
53 # 随机登山点
54 st_x = X[0][randint(0, len_x - 1)]
55 st_y = Y[randint(0, len_y - 1)][0]
56 st_z = func(st_x, st_y)
57
58 def argmax(stx, sty, alisx, alisy):
59 cur = func(st_x, st_y)
60 next = func(alisx, alisy)
61
62 return cur < next and True or False
63
64 while (temperature > tmin):
65 # 随机产生一个新的邻近点
66 # 说明: 温度越高幅度邻近点跳跃的幅度越大
67 tmp_x = st_x + (random() * 2 - 1) * temperature
68 tmp_y = st_y + + (random() * 2 - 1) * temperature
69 if 4 > tmp_x >= -2 and 4 > tmp_y >= -2:
70 if argmax(st_x, st_y, tmp_x, tmp_y):
71 st_x = tmp_x
72 st_y = tmp_y
73 else: # 有机会跳出局域最优解
74 pp = 1.0 / (1.0 + np.exp(-(func(tmp_x, tmp_y) - func(st_x, st_y)) / temperature))
75 if random() < pp:
76 st_x = tmp_x
77 st_y = tmp_y
78 temperature *= delta # 以一定的速率下降
79 global_X.append(st_x)
80 global_Y.append(st_y)
81 return global_X, global_Y, func(st_x, st_y)
82
83
84 if __name__ == '__main__':
85 X = np.arange(-2, 4, 0.1)
86 Y = np.arange(-2, 4, 0.1)
87 X, Y = np.meshgrid(X, Y)
88 Z = func(X, Y, 1.7, 1.7)
89 px, py, maxhill = hill_climb(X, Y)
90 print px, py, maxhill
91 drawPaht(X, Y, Z, px, py, func(np.array(px), np.array(py), 1.7, 1.7))
View Code
效果:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28