京公网安备 11010802034615号
经营许可证编号:京B2-20210330
简单易学的机器学习算法—基于密度的聚类算法DBSCAN
一、基于密度的聚类算法的概述
我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别。
基于密度的聚类算法主要的目标是寻找被低密度区域分离的高密度区域。与基于距离的聚类算法不同的是,基于距离的聚类算法的聚类结果是球状的簇,而基于密度的聚类算法可以发现任意形状的聚类,这对于带有噪音点的数据起着重要的作用。
二、DBSCAN算法的原理
1、基本概念
DBSCAN(Density-Based Spatial Clustering of Application with Noise)是一种典型的基于密度的聚类算法,在DBSCAN算法中将数据点分为一下三类:
核心点。在半径Eps内含有超过MinPts数目的点
边界点。在半径Eps内点的数量小于MinPts,但是落在核心点的邻域内
噪音点。既不是核心点也不是边界点的点
在这里有两个量,一个是半径Eps,另一个是指定的数目MinPts。
一些其他的概念
Eps邻域。简单来讲就是与点p的距离小于等于Eps的所有的点的集合,可以表示为
。
直接密度可达。如果p在核心对象q的Eps邻域内,则称对象p从对象q出发是直接密度可达的。
密度可达。对于对象链:
,
是从
关于Eps和MinPts直接密度可达的,则对象
是从对象
关于Eps和MinPts密度可达的。
2、算法流程

(流程)
三、实验仿真
在实验中使用了两个测试数据集,数据集的原始图像如下:

(数据集1)

(数据集2)
数据集1相对比较简单。显然我们可以发现数据集1共有两个类,数据集2有四个类,下面我们通过DBSCAN算法实现数据点的聚类:
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% DBSCAN
clear all;
clc;
%% 导入数据集
% data = load('testData.txt');
data = load('testData_2.txt');
% 定义参数Eps和MinPts
MinPts = 5;
Eps = epsilon(data, MinPts);
[m,n] = size(data);%得到数据的大小
x = [(1:m)' data];
[m,n] = size(x);%重新计算数据集的大小
types = zeros(1,m);%用于区分核心点1,边界点0和噪音点-1
dealed = zeros(m,1);%用于判断该点是否处理过,0表示未处理过
dis = calDistance(x(:,2:n));
number = 1;%用于标记类
%% 对每一个点进行处理
for i = 1:m
%找到未处理的点
if dealed(i) == 0
xTemp = x(i,:);
D = dis(i,:);%取得第i个点到其他所有点的距离
ind = find(D<=Eps);%找到半径Eps内的所有点
%% 区分点的类型
%边界点
if length(ind) > 1 && length(ind) < MinPts+1
types(i) = 0;
class(i) = 0;
end
%噪音点
if length(ind) == 1
types(i) = -1;
class(i) = -1;
dealed(i) = 1;
end
%核心点(此处是关键步骤)
if length(ind) >= MinPts+1
types(xTemp(1,1)) = 1;
class(ind) = number;
% 判断核心点是否密度可达
while ~isempty(ind)
yTemp = x(ind(1),:);
dealed(ind(1)) = 1;
ind(1) = [];
D = dis(yTemp(1,1),:);%找到与ind(1)之间的距离
ind_1 = find(D<=Eps);
if length(ind_1)>1%处理非噪音点
class(ind_1) = number;
if length(ind_1) >= MinPts+1
types(yTemp(1,1)) = 1;
else
types(yTemp(1,1)) = 0;
end
for j=1:length(ind_1)
if dealed(ind_1(j)) == 0
dealed(ind_1(j)) = 1;
ind=[ind ind_1(j)];
class(ind_1(j))=number;
end
end
end
end
number = number + 1;
end
end
end
% 最后处理所有未分类的点为噪音点
ind_2 = find(class==0);
class(ind_2) = -1;
types(ind_2) = -1;
%% 画出最终的聚类图
hold on
for i = 1:m
if class(i) == -1
plot(data(i,1),data(i,2),'.r');
elseif class(i) == 1
if types(i) == 1
plot(data(i,1),data(i,2),'+b');
else
plot(data(i,1),data(i,2),'.b');
end
elseif class(i) == 2
if types(i) == 1
plot(data(i,1),data(i,2),'+g');
else
plot(data(i,1),data(i,2),'.g');
end
elseif class(i) == 3
if types(i) == 1
plot(data(i,1),data(i,2),'+c');
else
plot(data(i,1),data(i,2),'.c');
end
else
if types(i) == 1
plot(data(i,1),data(i,2),'+k');
else
plot(data(i,1),data(i,2),'.k');
end
end
end
hold off
距离计算函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 计算矩阵中点与点之间的距离
function [ dis ] = calDistance( x )
[m,n] = size(x);
dis = zeros(m,m);
for i = 1:m
for j = i:m
%计算点i和点j之间的欧式距离
tmp =0;
for k = 1:n
tmp = tmp+(x(i,k)-x(j,k)).^2;
end
dis(i,j) = sqrt(tmp);
dis(j,i) = dis(i,j);
end
end
end
epsilon函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [Eps]=epsilon(x,k)
% Function: [Eps]=epsilon(x,k)
%
% Aim:
% Analytical way of estimating neighborhood radius for DBSCAN
%
% Input:
% x - data matrix (m,n); m-objects, n-variables
% k - number of objects in a neighborhood of an object
% (minimal number of objects considered as a cluster)
[m,n]=size(x);
Eps=((prod(max(x)-min(x))*k*gamma(.5*n+1))/(m*sqrt(pi.^n))).^(1/n);
最终的结果

(数据集1的聚类结果)

(数据集2的聚类结果)
在上面的结果中,红色的点代表的是噪音点,点代表的是边界点,十字代表的是核心点。不同的颜色代表着不同的类。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21