
一、决策树分类算法概述
决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集
(数据集)
其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是,0表示否。决策树算法的思想是基于属性对数据分类,对于以上的数据我们可以得到以下的决策树模型
(决策树模型)
先是根据第一个属性将一部份数据区分开,再根据第二个属性将剩余的区分开。
实现决策树的算法有很多种,有ID3、C4.5和CART等算法。下面我们介绍ID3算法。
二、ID3算法的概述
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
首先,ID3算法需要解决的问题是如何选择特征作为划分数据集的标准。在ID3算法中,选择信息增益最大的属性作为当前的特征对数据集分类。信息增益的概念将在下面介绍,通过不断的选择特征对数据集不断划分;
其次,ID3算法需要解决的问题是如何判断划分的结束。分为两种情况,第一种为划分出来的类属于同一个类,如上图中的最左端的“非鱼类”,即为数据集中的第5行和第6行数据;最右边的“鱼类”,即为数据集中的第2行和第3行数据。第二种为已经没有属性可供再分了。此时就结束了。
通过迭代的方式,我们就可以得到这样的决策树模型。
(ID3算法基本流程)
三、划分数据的依据
ID3算法是以信息熵和信息增益作为衡量标准的分类算法。
1、信息熵(Entropy)
熵的概念主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,熵的公式可以表示为:
其中为类别在样本s中出现的概率。
2、信息增益(Information gain)
信息增益指的是划分前后熵的变化,可以用下面的公式表示:
其中,a表示样本的属性,是属性所有的取值集合。v是a的其中一个属性值,sv是s中a的值为v的样例集合。
四、实验仿真
1、数据预处理
我们以下面的数据为例,来实现ID3算法:
我们首先需要对数据处理,例如age属性,我们用0表示youth,1表示middle_aged,2表示senior等等。
(将表格数据化)
2、实验结果
(原始的数据)
(划分1)
(划分2)
(划分3)
(最终的决策树)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Decision Tree
% ID3
%导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0];
data = [0,2,0,0,0;
0,2,0,1,0;
1,2,0,0,1;
2,1,0,0,1;
2,0,1,0,1;
2,0,1,1,0;
1,0,1,1,1;
0,1,0,0,0;
0,0,1,0,1;
2,1,1,0,1;
0,1,1,1,1;
1,1,0,1,1;
1,2,1,0,1;
2,1,0,1,0];
% 生成决策树
createTree(data);
生成决策树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output_args ] = createTree( data )
[m,n] = size(data);
disp('original data:');
disp(data);
classList = data(:,n);
classOne = 1;%记录第一个类的个数
for i = 2:m
if classList(i,:) == classList(1,:)
classOne = classOne+1;
end
end
% 类别全相同
if classOne == m
disp('final data: ');
disp(data);
return;
end
% 特征全部用完
if n == 1
disp('final data: ');
disp(data);
return;
end
bestFeat = chooseBestFeature(data);
disp(['bestFeat: ', num2str(bestFeat)]);
featValues = unique(data(:,bestFeat));
numOfFeatValue = length(featValues);
for i = 1:numOfFeatValue
createTree(splitData(data, bestFeat, featValues(i,:)));
disp('-------------------------');
end
end
选择信息增益最大的特征
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
[m,n] = size(data);% 得到数据集的大小
% 统计特征的个数
numOfFeatures = n-1;%最后一列是类别
% 原始的熵
baseEntropy = calEntropy(data);
bestInfoGain = 0;%初始化信息增益
bestFeature = 0;% 初始化最佳的特征位
% 挑选最佳的特征位
for j = 1:numOfFeatures
featureTemp = unique(data(:,j));
numF = length(featureTemp);%属性的个数
newEntropy = 0;%划分之后的熵
for i = 1:numF
subSet = splitData(data, j, featureTemp(i,:));
[m_1, n_1] = size(subSet);
prob = m_1./m;
newEntropy = newEntropy + prob * calEntropy(subSet);
end
%计算增益
infoGain = baseEntropy - newEntropy;
if infoGain > bestInfoGain
bestInfoGain = infoGain;
bestFeature = j;
end
end
end
计算熵
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ entropy ] = calEntropy( data )
[m,n] = size(data);
% 得到类别的项
label = data(:,n);
% 处理完的label
label_deal = unique(label);
numLabel = length(label_deal);
prob = zeros(numLabel,2);
% 统计标签
for i = 1:numLabel
prob(i,1) = label_deal(i,:);
for j = 1:m
if label(j,:) == label_deal(i,:)
prob(i,2) = prob(i,2)+1;
end
end
end
% 计算熵
prob(:,2) = prob(:,2)./m;
entropy = 0;
for i = 1:numLabel
entropy = entropy - prob(i,2) * log2(prob(i,2));
end
end
划分数据
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ subSet ] = splitData( data, axis, value )
[m,n] = size(data);%得到待划分数据的大小
subSet = data;
subSet(:,axis) = [];
k = 0;
for i = 1:m
if data(i,axis) ~= value
subSet(i-k,:) = [];
k = k+1;
end
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15