一、决策树分类算法概述
决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集
(数据集)
其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是,0表示否。决策树算法的思想是基于属性对数据分类,对于以上的数据我们可以得到以下的决策树模型
(决策树模型)
先是根据第一个属性将一部份数据区分开,再根据第二个属性将剩余的区分开。
实现决策树的算法有很多种,有ID3、C4.5和CART等算法。下面我们介绍ID3算法。
二、ID3算法的概述
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
首先,ID3算法需要解决的问题是如何选择特征作为划分数据集的标准。在ID3算法中,选择信息增益最大的属性作为当前的特征对数据集分类。信息增益的概念将在下面介绍,通过不断的选择特征对数据集不断划分;
其次,ID3算法需要解决的问题是如何判断划分的结束。分为两种情况,第一种为划分出来的类属于同一个类,如上图中的最左端的“非鱼类”,即为数据集中的第5行和第6行数据;最右边的“鱼类”,即为数据集中的第2行和第3行数据。第二种为已经没有属性可供再分了。此时就结束了。
通过迭代的方式,我们就可以得到这样的决策树模型。
(ID3算法基本流程)
三、划分数据的依据
ID3算法是以信息熵和信息增益作为衡量标准的分类算法。
1、信息熵(Entropy)
熵的概念主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,熵的公式可以表示为:
其中为类别在样本s中出现的概率。
2、信息增益(Information gain)
信息增益指的是划分前后熵的变化,可以用下面的公式表示:
其中,a表示样本的属性,是属性所有的取值集合。v是a的其中一个属性值,sv是s中a的值为v的样例集合。
四、实验仿真
1、数据预处理
我们以下面的数据为例,来实现ID3算法:
我们首先需要对数据处理,例如age属性,我们用0表示youth,1表示middle_aged,2表示senior等等。
(将表格数据化)
2、实验结果
(原始的数据)
(划分1)
(划分2)
(划分3)
(最终的决策树)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Decision Tree
% ID3
%导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0];
data = [0,2,0,0,0;
0,2,0,1,0;
1,2,0,0,1;
2,1,0,0,1;
2,0,1,0,1;
2,0,1,1,0;
1,0,1,1,1;
0,1,0,0,0;
0,0,1,0,1;
2,1,1,0,1;
0,1,1,1,1;
1,1,0,1,1;
1,2,1,0,1;
2,1,0,1,0];
% 生成决策树
createTree(data);
生成决策树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output_args ] = createTree( data )
[m,n] = size(data);
disp('original data:');
disp(data);
classList = data(:,n);
classOne = 1;%记录第一个类的个数
for i = 2:m
if classList(i,:) == classList(1,:)
classOne = classOne+1;
end
end
% 类别全相同
if classOne == m
disp('final data: ');
disp(data);
return;
end
% 特征全部用完
if n == 1
disp('final data: ');
disp(data);
return;
end
bestFeat = chooseBestFeature(data);
disp(['bestFeat: ', num2str(bestFeat)]);
featValues = unique(data(:,bestFeat));
numOfFeatValue = length(featValues);
for i = 1:numOfFeatValue
createTree(splitData(data, bestFeat, featValues(i,:)));
disp('-------------------------');
end
end
选择信息增益最大的特征
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
[m,n] = size(data);% 得到数据集的大小
% 统计特征的个数
numOfFeatures = n-1;%最后一列是类别
% 原始的熵
baseEntropy = calEntropy(data);
bestInfoGain = 0;%初始化信息增益
bestFeature = 0;% 初始化最佳的特征位
% 挑选最佳的特征位
for j = 1:numOfFeatures
featureTemp = unique(data(:,j));
numF = length(featureTemp);%属性的个数
newEntropy = 0;%划分之后的熵
for i = 1:numF
subSet = splitData(data, j, featureTemp(i,:));
[m_1, n_1] = size(subSet);
prob = m_1./m;
newEntropy = newEntropy + prob * calEntropy(subSet);
end
%计算增益
infoGain = baseEntropy - newEntropy;
if infoGain > bestInfoGain
bestInfoGain = infoGain;
bestFeature = j;
end
end
end
计算熵
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ entropy ] = calEntropy( data )
[m,n] = size(data);
% 得到类别的项
label = data(:,n);
% 处理完的label
label_deal = unique(label);
numLabel = length(label_deal);
prob = zeros(numLabel,2);
% 统计标签
for i = 1:numLabel
prob(i,1) = label_deal(i,:);
for j = 1:m
if label(j,:) == label_deal(i,:)
prob(i,2) = prob(i,2)+1;
end
end
end
% 计算熵
prob(:,2) = prob(:,2)./m;
entropy = 0;
for i = 1:numLabel
entropy = entropy - prob(i,2) * log2(prob(i,2));
end
end
划分数据
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ subSet ] = splitData( data, axis, value )
[m,n] = size(data);%得到待划分数据的大小
subSet = data;
subSet(:,axis) = [];
k = 0;
for i = 1:m
if data(i,axis) ~= value
subSet(i-k,:) = [];
k = k+1;
end
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03