京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、决策树分类算法概述
决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集

(数据集)
其中,第一列和第二列为属性(特征),最后一列为类别标签,1表示是,0表示否。决策树算法的思想是基于属性对数据分类,对于以上的数据我们可以得到以下的决策树模型

(决策树模型)
先是根据第一个属性将一部份数据区分开,再根据第二个属性将剩余的区分开。
实现决策树的算法有很多种,有ID3、C4.5和CART等算法。下面我们介绍ID3算法。
二、ID3算法的概述
ID3算法是由Quinlan首先提出的,该算法是以信息论为基础,以信息熵和信息增益为衡量标准,从而实现对数据的归纳分类。
首先,ID3算法需要解决的问题是如何选择特征作为划分数据集的标准。在ID3算法中,选择信息增益最大的属性作为当前的特征对数据集分类。信息增益的概念将在下面介绍,通过不断的选择特征对数据集不断划分;
其次,ID3算法需要解决的问题是如何判断划分的结束。分为两种情况,第一种为划分出来的类属于同一个类,如上图中的最左端的“非鱼类”,即为数据集中的第5行和第6行数据;最右边的“鱼类”,即为数据集中的第2行和第3行数据。第二种为已经没有属性可供再分了。此时就结束了。
通过迭代的方式,我们就可以得到这样的决策树模型。

(ID3算法基本流程)
三、划分数据的依据
ID3算法是以信息熵和信息增益作为衡量标准的分类算法。
1、信息熵(Entropy)
熵的概念主要是指信息的混乱程度,变量的不确定性越大,熵的值也就越大,熵的公式可以表示为:

其中
为类别在样本s中出现的概率。
2、信息增益(Information gain)
信息增益指的是划分前后熵的变化,可以用下面的公式表示:
其中,a表示样本的属性,
是属性所有的取值集合。v是a的其中一个属性值,sv是s中a的值为v的样例集合。
四、实验仿真
1、数据预处理
我们以下面的数据为例,来实现ID3算法:

我们首先需要对数据处理,例如age属性,我们用0表示youth,1表示middle_aged,2表示senior等等。

(将表格数据化)
2、实验结果

(原始的数据)

(划分1)

(划分2)

(划分3)

(最终的决策树)
MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% Decision Tree
% ID3
%导入数据
%data = [1,1,1;1,1,1;1,0,0;0,1,0;0,1,0];
data = [0,2,0,0,0;
0,2,0,1,0;
1,2,0,0,1;
2,1,0,0,1;
2,0,1,0,1;
2,0,1,1,0;
1,0,1,1,1;
0,1,0,0,0;
0,0,1,0,1;
2,1,1,0,1;
0,1,1,1,1;
1,1,0,1,1;
1,2,1,0,1;
2,1,0,1,0];
% 生成决策树
createTree(data);
生成决策树
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ output_args ] = createTree( data )
[m,n] = size(data);
disp('original data:');
disp(data);
classList = data(:,n);
classOne = 1;%记录第一个类的个数
for i = 2:m
if classList(i,:) == classList(1,:)
classOne = classOne+1;
end
end
% 类别全相同
if classOne == m
disp('final data: ');
disp(data);
return;
end
% 特征全部用完
if n == 1
disp('final data: ');
disp(data);
return;
end
bestFeat = chooseBestFeature(data);
disp(['bestFeat: ', num2str(bestFeat)]);
featValues = unique(data(:,bestFeat));
numOfFeatValue = length(featValues);
for i = 1:numOfFeatValue
createTree(splitData(data, bestFeat, featValues(i,:)));
disp('-------------------------');
end
end
选择信息增益最大的特征
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 选择信息增益最大的特征
function [ bestFeature ] = chooseBestFeature( data )
[m,n] = size(data);% 得到数据集的大小
% 统计特征的个数
numOfFeatures = n-1;%最后一列是类别
% 原始的熵
baseEntropy = calEntropy(data);
bestInfoGain = 0;%初始化信息增益
bestFeature = 0;% 初始化最佳的特征位
% 挑选最佳的特征位
for j = 1:numOfFeatures
featureTemp = unique(data(:,j));
numF = length(featureTemp);%属性的个数
newEntropy = 0;%划分之后的熵
for i = 1:numF
subSet = splitData(data, j, featureTemp(i,:));
[m_1, n_1] = size(subSet);
prob = m_1./m;
newEntropy = newEntropy + prob * calEntropy(subSet);
end
%计算增益
infoGain = baseEntropy - newEntropy;
if infoGain > bestInfoGain
bestInfoGain = infoGain;
bestFeature = j;
end
end
end
计算熵
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ entropy ] = calEntropy( data )
[m,n] = size(data);
% 得到类别的项
label = data(:,n);
% 处理完的label
label_deal = unique(label);
numLabel = length(label_deal);
prob = zeros(numLabel,2);
% 统计标签
for i = 1:numLabel
prob(i,1) = label_deal(i,:);
for j = 1:m
if label(j,:) == label_deal(i,:)
prob(i,2) = prob(i,2)+1;
end
end
end
% 计算熵
prob(:,2) = prob(:,2)./m;
entropy = 0;
for i = 1:numLabel
entropy = entropy - prob(i,2) * log2(prob(i,2));
end
end
划分数据
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
function [ subSet ] = splitData( data, axis, value )
[m,n] = size(data);%得到待划分数据的大小
subSet = data;
subSet(:,axis) = [];
k = 0;
for i = 1:m
if data(i,axis) ~= value
subSet(i-k,:) = [];
k = k+1;
end
end
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11