京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Data Analyst,即 “注册数据分析师”)证书作为数据分析领域的专业认证,受到了众多企业的高度认可,也吸引了大量有志于从事数据分析工作的人士踊跃报考。在备考 CDA 证书的过程中,清晰了解考试时间安排是迈向成功的关键一步。
CDA 考试分为三个级别,每个级别的考试时间安排各有特点。对于 CDA LEVEL I 和 LEVEL II,考试报名十分灵活,随时都可以进行报名。报名成功后,考生拥有一年内的自主选择权,可根据自身的学习进度和时间安排,自行预约就近的考试中心参加考试。这种随报随考的模式,为考生提供了极大的便利。无论是在职人员利用业余时间备考,还是在校学生根据学期计划安排考试,都能够找到最适合自己的考试时机。
例如,一位在职的数据专员,由于日常工作繁忙,只能利用晚上和周末的时间学习。他在完成 CDA LEVEL I 的学习后,通过考试中心的线上预约系统,选择了一个距离自己工作地点较近的考点,并挑选了一个周末的上午进行考试。这样的安排既不影响工作,又能顺利完成考试,充分体现了 CDA LEVEL I 和 LEVEL II 考试时间的灵活性。
而 CDA LEVEL III 的考试时间安排则有所不同。它一年举办四届,分别在 3 月、6 月、9 月、12 月的最后一个周六进行。每届考试的报名截止时间为考前一个月,考生需要提前规划好自己的学习进度和报名时间,以免错过报名机会。这种相对固定的考试时间安排,要求考生有更为严谨的学习计划和时间管理能力。

以一位计划报考 CDA LEVEL III 的资深数据分析师为例,他在年初制定了详细的学习计划,根据考试时间倒推,合理安排每个阶段的学习任务。在 3 月考试报名开启前,他已经完成了大部分知识点的学习,并进行了多次模拟考试。报名成功后,他针对模拟考试中暴露的薄弱环节进行了有针对性的强化训练,最终在 6 月的考试中取得了优异的成绩。
不同级别的考试时长也有所差异。LEVEL I 的考试时间为 120 分钟,在这有限的时间内,考生需要快速且准确地回答各类题目,这对考生的知识掌握熟练度和答题速度提出了较高要求。考生需要在备考过程中进行大量的模拟练习,提高自己的答题效率。
LEVEL II 的考试时间延长至 150 分钟,这是因为 LEVEL II 的考试内容在 LEVEL I 的基础上更加深入和复杂,涉及到更多的数据分析技能和实际案例应用。考生需要在规定时间内,不仅要展现出扎实的理论基础,还要能够灵活运用所学知识解决实际问题,这就要求考生具备更强的综合分析能力和时间管理能力。
LEVEL III 的考试时间最长,为 210 分钟,且分为两个部分。前 90 分钟为选择题,主要考查考生对专业知识的理解和掌握程度;后 120 分钟为案例实操题,要求考生根据给定的实际业务案例,运用所学的数据分析工具和方法,进行数据处理、分析,并提出切实可行的解决方案。这种考试形式全面考查了考生的实际操作能力和解决复杂问题的能力,也体现了 CDA LEVEL III 证书对考生专业水平的高要求。
了解考试时间安排后,合理规划备考时间至关重要。对于 CDA LEVEL I,由于其考试难度相对较低,适合零基础的考生报考。一般来说,备考 2 - 3 个月即可。考生可以制定详细的学习计划,将教材中的知识点进行系统学习,并结合题库中的题目进行练习。在学习过程中,要注重对基础知识的理解和掌握,建立起完整的知识体系框架。例如,在学习数据分析工具 Excel 时,要熟练掌握数据透视表、函数公式等常用功能的使用方法,并通过实际案例进行练习,提高自己的操作能力。
CDA LEVEL II 则需要考生具备一定的编程和数学基础,考试难度有所提升。备考时间建议在 3 - 6 个月左右。考生在学习过程中,除了掌握 Excel、SQL 等工具外,还需要深入学习 Python 等编程语言在数据分析中的应用。同时,要注重对数据模型、数据采集处理等知识的学习和理解,并通过实际项目进行实践操作,提升自己的项目经验和解决实际问题的能力。
对于 CDA LEVEL III,由于其考试内容涉及到高级数据处理、机器学习算法等前沿知识,考试难度较大,备考时间通常需要 6 个月以上。考生需要具备扎实的数学基础、丰富的数据分析经验以及对行业前沿技术的深入了解。在备考过程中,要系统学习 R 语言、pytorch、tensorflow 等工具和框架,并结合大量的实际案例进行练习。同时,要关注行业动态和最新研究成果,不断拓宽自己的知识面和视野。
在备考过程中,考生还可以根据考试时间制定阶段性的学习目标。例如,在距离考试还有 3 个月时,完成所有知识点的第一轮学习,并进行一次模拟考试,了解自己的学习水平和薄弱环节;在距离考试还有 2 个月时,针对薄弱环节进行强化学习,并进行第二次模拟考试,检验学习效果;在距离考试还有 1 个月时,进行最后的冲刺复习,回顾重点知识点,进行全真模拟考试,调整考试状态。
此外,考生还需要关注考试时间的变化。CDA 考试的主办方会根据实际情况对考试时间进行调整,考生要及时关注 CDA 认证官网的通知,以免因考试时间变更而造成不必要的麻烦。在报名成功后,要仔细查看准考证上的考试时间、地点等信息,并提前做好考试准备,确保能够按时参加考试。
CDA 考试时间的合理安排为考生提供了多样化的选择,考生应根据自己的实际情况,选择适合自己的考试级别和考试时间,并制定科学合理的备考计划。通过充分利用考试时间,扎实备考,相信每一位考生都能够在 CDA 考试中取得优异的成绩,为自己的数据分析职业生涯开启一扇成功之门。
报考流程:

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04