京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量修改文件名、批量读取文件内容,都需要先实现对目录和文件的高效遍历。而os.walk()函数作为Python标准库os模块的核心工具,凭借其“递归遍历目录树”的强大能力,成为处理这类需求的首选方案。它无需手动实现递归逻辑,就能自动遍历指定目录下的所有子目录和文件,极大简化了代码复杂度。本文将系统拆解os.walk()的工作原理、基础用法、进阶实战场景及注意事项,帮助读者快速掌握文件遍历技巧,解决实际开发中的批量文件处理问题。
os.walk()是Python内置的目录树遍历函数,其核心作用是“自上而下”或“自下而上”遍历指定目录下的所有子目录和文件,返回每个目录下的“当前目录路径、子目录列表、文件列表”三大核心信息。
核心价值的体现在于:
自动递归:无需手动编写递归代码,即可遍历目录树的所有层级(包括深层子目录);
信息完整:直接返回目录和文件的核心信息,无需额外调用os.listdir()等函数辅助获取;
灵活可控:支持遍历方向(自上而下/自下而上)、过滤特定目录/文件,适配不同业务场景。
适用场景:批量处理文件(如批量重命名、批量转换格式)、目录结构分析(如统计各类型文件数量)、文件检索(如查找包含特定内容的文件)、目录备份与迁移等。
核心前提:使用os.walk()前需导入os模块(内置模块,无需额外安装);遍历的目录路径建议使用“绝对路径”,避免因运行环境不同导致路径错误。
要灵活使用os.walk(),首先需要理解其工作机制和返回值结构——这是后续实现各类遍历需求的基础。
os.walk(top, topdown=True, onerror=None, followlinks=False)的核心参数说明:
top(必传):指定要遍历的根目录路径(字符串类型);
topdown(可选,默认True):遍历方向控制——True表示“自上而下”(先遍历根目录,再遍历根目录下的子目录),False表示“自下而上”(先遍历最深层子目录,再回溯到根目录);
onerror(可选,默认None):错误处理函数——当遍历过程中遇到错误(如权限不足、目录不存在)时,会调用该函数处理(如打印错误信息);
followlinks(可选,默认False):是否跟随符号链接(Windows系统的快捷方式、Linux系统的符号链接)——True表示跟随,False表示不跟随(避免陷入无限循环)。
os.walk()返回一个“生成器”(generator),每次迭代会返回一个元组(root, dirs, files),其中:
root:当前正在遍历的目录的绝对路径(字符串);
dirs:当前目录下的所有子目录名称列表(列表元素为字符串,仅包含目录名,不包含完整路径);
files:当前目录下的所有文件名称列表(列表元素为字符串,仅包含文件名,不包含完整路径)。
示例说明:假设存在如下目录结构:
data/
├─ docs/
│ ├─ report.txt
│ └─ plan.docx
├─ images/
│ ├─ pic1.jpg
│ └─ pic2.png
└─ readme.md
当调用os.walk("data")时,第一次迭代返回("data", ["docs", "images"], ["readme.md"]),第二次迭代返回("data/docs", [], ["report.txt", "plan.docx"]),第三次迭代返回("data/images", [], ["pic1.jpg", "pic2.png"])。
掌握基础用法是实现复杂需求的前提,以下3个案例覆盖“遍历所有目录和文件”“获取文件完整路径”“筛选特定类型文件”,新手可直接复制代码运行学习。
最基础的用法:遍历指定目录下的所有目录和文件,打印每个目录的路径、子目录列表和文件列表。
import os
# 定义要遍历的根目录(建议使用绝对路径,此处以相对路径为例)
root_dir = "data"
# 遍历目录树
for root, dirs, files in os.walk(root_dir):
print(f"当前遍历目录:{root}")
print(f"该目录下的子目录:{dirs}")
print(f"该目录下的文件:{files}")
print("-" * 50) # 分隔符,便于阅读
运行结果(对应上文目录结构):
当前遍历目录:data
该目录下的子目录:['docs', 'images']
该目录下的文件:['readme.md']
--------------------------------------------------
当前遍历目录:data/docs
该目录下的子目录:[]
该目录下的文件:['report.txt', 'plan.docx']
--------------------------------------------------
当前遍历目录:data/images
该目录下的子目录:[]
该目录下的文件:['pic1.jpg', 'pic2.png']
--------------------------------------------------
files列表仅返回文件名,若需要操作文件(如读取、修改),需拼接root和文件名得到完整路径(推荐使用os.path.join(),自动适配Windows/Linux的路径分隔符)。
import os
root_dir = "data"
for root, dirs, files in os.walk(root_dir):
# 遍历当前目录下的所有文件,拼接完整路径
for file_name in files:
file_path = os.path.join(root, file_name) # 拼接完整路径
print(f"文件完整路径:{file_path}")
运行结果:
文件完整路径:datareadme.md # Windows系统,分隔符为
# 或 data/readme.md # Linux/Mac系统,分隔符为/
文件完整路径:datadocsreport.txt
文件完整路径:datadocsplan.docx
文件完整路径:dataimagespic1.jpg
文件完整路径:dataimagespic2.png
实际开发中常需要筛选特定后缀的文件,可通过str.endswith()方法判断文件名后缀。
import os
root_dir = "data"
target_suffix = ".txt" # 要筛选的文件后缀
# 遍历目录,筛选目标文件
for root, dirs, files in os.walk(root_dir):
for file_name in files:
if file_name.endswith(target_suffix): # 判断后缀是否匹配
file_path = os.path.join(root, file_name)
print(f"找到{target_suffix}文件:{file_path}")
运行结果:
找到.txt文件:datadocsreport.txt
拓展:若需筛选多种类型文件(如.txt和.docx),可修改判断条件为if file_name.endswith((".txt", ".docx"))。
掌握基础用法后,结合实际业务需求拓展进阶功能,以下4个场景覆盖批量处理、统计分析、文件检索等核心需求,可直接适配到项目开发中。
需求:将“data/images”目录下所有.jpg文件重命名为“img_序号.jpg”(如img_1.jpg、img_2.jpg)。
import os
root_dir = "data/images"
prefix = "img_" # 新文件名前缀
suffix = ".jpg" # 目标文件后缀
count = 1 # 序号计数器
for root, dirs, files in os.walk(root_dir):
for file_name in files:
if file_name.endswith(suffix):
# 构建旧文件路径和新文件路径
old_path = os.path.join(root, file_name)
new_name = f"{prefix}{count}{suffix}"
new_path = os.path.join(root, new_name)
# 重命名文件
os.rename(old_path, new_path)
print(f"重命名完成:{old_path} → {new_path}")
count += 1
关键说明:重命名前建议先打印旧路径和新路径,确认无误后再执行os.rename(),避免误改文件。
需求:遍历“data”目录,统计所有文件类型(按后缀分类)的数量,如.txt文件1个、.jpg文件2个。
import os
root_dir = "data"
file_count = {} # 字典:key为文件后缀,value为数量
for root, dirs, files in os.walk(root_dir):
for file_name in files:
# 获取文件后缀(若文件无后缀,记为"无后缀文件")
suffix = os.path.splitext(file_name)[1] or "无后缀文件"
# 更新计数
file_count[suffix] = file_count.get(suffix, 0) + 1
# 打印统计结果
print("目录文件类型统计:")
for suffix, count in file_count.items():
print(f"{suffix}文件:{count}个")
运行结果:
目录文件类型统计:
.md文件:1个
.txt文件:1个
.docx文件:1个
.jpg文件:2个
.png文件:1个
需求:遍历“data”目录下所有.txt文件,查找包含“2024年度计划”的文件,并打印文件路径。
import os
root_dir = "data"
target_content = "2024年度计划" # 要查找的内容
target_suffix = ".txt"
for root, dirs, files in os.walk(root_dir):
for file_name in files:
if file_name.endswith(target_suffix):
file_path = os.path.join(root, file_name)
# 读取文件内容(注意编码,避免中文乱码)
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
if target_content in content:
print(f"找到包含目标内容的文件:{file_path}")
except Exception as e:
print(f"读取文件失败:{file_path},错误信息:{e}")
关键说明:读取文件时需指定正确的编码(如utf-8、gbk),避免因编码不匹配导致读取失败;建议加入try-except捕获异常,提升代码健壮性。
需求:将“data/docs”目录下所有.docx文件复制到“backup/docs_backup”目录(若目标目录不存在,先创建)。
import os
import shutil # 用于复制文件
source_dir = "data/docs" # 源目录
target_dir = "backup/docs_backup" # 目标目录
target_suffix = ".docx"
# 若目标目录不存在,创建目录(包括多级目录)
if not os.path.exists(target_dir):
os.makedirs(target_dir)
# 遍历源目录,复制目标文件
for root, dirs, files in os.walk(source_dir):
for file_name in files:
if file_name.endswith(target_suffix):
source_path = os.path.join(root, file_name)
target_path = os.path.join(target_dir, file_name)
# 复制文件
shutil.copy2(source_path, target_path) # copy2会保留文件元信息(如创建时间)
print(f"复制完成:{source_path} → {target_path}")
拓展:若需复制整个目录结构(包括子目录),可修改代码逻辑,在复制文件时同步创建目标目录的子目录结构。
在使用os.walk()时,若不注意以下细节,容易出现路径错误、程序崩溃等问题,需重点规避:
相对路径容易因运行环境不同(如不同目录下执行脚本)导致“找不到目录”错误,建议使用绝对路径(如C:/data、/home/user/data);拼接路径时必须使用os.path.join(),避免手动拼接(如root + "/" + file_name),否则会因系统分隔符不同导致错误。
遍历某些系统目录(如Windows的C:/Windows、Linux的/root)时,可能因权限不足导致遍历失败。此时可通过onerror参数指定错误处理函数,捕获并处理错误:
import os
def handle_error(err):
"""错误处理函数:打印错误信息"""
print(f"遍历错误:{err}")
for root, dirs, files in os.walk("C:/Windows", onerror=handle_error):
print(root)
若目录中存在符号链接(快捷方式),且设置followlinks=True,可能导致程序陷入无限循环(如符号链接指向父目录)。建议默认保持followlinks=False,仅在明确需要跟随符号链接时开启,并确保符号链接不会形成循环。
当topdown=True时,修改dirs列表会影响后续遍历的子目录(如删除dirs中的某个元素,会跳过该子目录的遍历)。若需跳过特定子目录,可利用这一特性:
import os
root_dir = "data"
for root, dirs, files in os.walk(root_dir):
# 跳过名为"images"的子目录(不遍历该目录下的内容)
if "images" in dirs:
dirs.remove("images")
print(f"当前遍历目录:{root}")
注意:仅当topdown=True时,修改dirs才有效;topdown=False时,修改dirs无意义。
os.walk()作为Python文件遍历的“瑞士军刀”,其核心优势在于“简单高效、自动递归、适配多系统”,无需关注底层递归实现,就能快速实现目录树遍历。无论是新手入门文件操作,还是开发者处理复杂的批量文件需求,os.walk()都是不可或缺的工具。
学习建议:
先掌握基础返回值结构(root, dirs, files),这是所有用法的核心;
从简单案例(如打印文件路径、筛选文件)入手,逐步过渡到批量处理、统计分析等复杂场景;
结合os.path模块的其他函数(如os.path.splitext()、os.path.exists()),提升代码的灵活性和健壮性;
实际开发中,先通过打印日志确认遍历逻辑和文件路径,再执行修改、删除等危险操作,避免数据丢失。
无论是日常办公中的批量文件处理,还是项目开发中的目录分析、文件检索,os.walk()都能大幅提升效率。赶紧结合本文案例,动手实践起来,将其转化为自己的实用技能吧!

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09