京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、SVD奇异值分解的定义
假设M是一个
的矩阵,如果存在一个分解:

其中
的酉矩阵,
的半正定对角矩阵,
的共轭转置矩阵,且为
的酉矩阵。这样的分解称为M的奇异值分解,
对角线上的元素称为奇异值,
称为左奇异矩阵,
称为右奇异矩阵。
二、SVD奇异值分解与特征值分解的关系
特征值分解与SVD奇异值分解的目的都是提取一个矩阵最重要的特征。然而,特征值分解只适用于方阵,而SVD奇异值分解适用于任意的矩阵,不一定是方阵。
这里,
是方阵,
为单位矩阵,
的特征向量,
的特征向量。
的特征值为M的奇异值的平方。
三、SVD奇异值分解的作用和意义
奇异值分解最大的作用就是数据的降维,当然,还有其他很多的作用,这里主要讨论数据的降维,对于
的矩阵m,进行奇异值分解

取其前r个非零奇异值,可以还原原来的矩阵M,即前R个非零奇异值对应的奇异向量代表了M矩阵的主要特征。可以表示为

五、实验的仿真
我们在手写体上做实验,原始矩阵为

原始矩阵
对应的图像为

对应图像
经过SVD分解后的奇异值矩阵为

部分奇异值矩阵
取前14个非零奇异值

前14个非零奇异值
还原原始矩阵B,还原后的图像为

还原后的图像
对比图像

对比图像
MATLAB代码
[plain] view plain copy
%% 测试奇异值分解过程
load data.mat;%该文件是做好的一个手写体的图片
B = zeros(28,28);%将行向量重新转换成原始的图片
数据分析师培训
for i = 1:28
j = 28*(i-1)+1;
B(i,:) = A(1,j:j+27);
end
%进行奇异值分解
[U S V] = svd(B);
%选取前面14个非零奇异值
for i = 1:14
for j = 1:14
S_1(i,j) = S(i,j);
end
end
%左奇异矩阵
for i = 1:28
for j = 1:14
U_1(i,j) = U(i,j);
end
end
%右奇异矩阵
for i = 1:28
for j = 1:14
V_1(i,j) = V(i,j);
end
end
B_1 = U_1*S_1*V_1';
%同时输出两个图片
subplot(121);imshow(B);
subplot(122);imshow(B_1);
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15