cda

数字化人才认证

首页 > 行业图谱 >

123456789 1/9

一文带你快速了解矩阵中特征值与 特征向量 那些事儿

一文带你快速了解矩阵中特征值与特征向量那些事儿
2020-08-03
在线性代数中,我们都学过特征值与特征向量,但是对于这两者的意义以及应用却理解得不是那么深刻。机器学习中,我们也经常会遇到特征值与特征向量这两个概念,小编今天就给大家具体分享一下这两者的基本知识。 ...

特征值和 特征向量 的详细计算及几何意义

特征值和特征向量的详细计算及几何意义
2020-07-08
矩阵特征值与特征向量在机器学习算法中经常会用到,每次出现都有着其独特的意义,如果不能深入理解特征值和特征向量两个概念,对我们机器学习的实际应用会有很大影响。小编今天整理了特征值和特征向量的概念计算以 ...

 特征向量 与特征空间有什么区别?

特征向量与特征空间有什么区别?
2020-05-21
事物的每个属性值,都是在一定范围内变化的,如:修改桌子高度一般在0.5米-1.5米范围内变化,宽度在0.6米-1.5米范围内变化,长度是1米-3米的范围内变化,则由这三个范围限度的一个三维空间就是桌子的特征空间。 ...

 特征向量 和特征值存在什么样的内在关系?

特征向量和特征值存在什么样的内在关系?
2020-05-20
特征向量(eigenvector),矩阵理论上一个非常重要的概念,被广泛的应用于各个领域。 数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变,该向量在此变换下缩放的比例称为其特征值 ...
数据分析师必须学的数学知识
2024-12-02
作为数据分析领域的探险者,我们时常需要穿越数字的迷雾,发现隐藏在数据背后的故事。而要成为一名优秀的数据分析师,数学知识无疑是我们的利剑和护身符。让我们深入探讨,了解数据分析师必须掌握的数学基础,以助力 ...
数据分析必备的数学知识有哪些
2024-11-30
在当今数字化时代,数据分析已经成为企业决策过程中不可或缺的一环。除了掌握技术工具和业务理解外,深入了解数学知识也是数据分析师必备的能力之一。本文将探讨数据分析中关键的数学概念,以及如何运用这些知识来支 ...
每天一个数据分析题(四百九十)- 主成分分析与因子分析
2024-08-20
在主成分分析中,主成分的选择通常是按照( )的大小排序来进行的。 A.        特征值 B.        特征向量 C.        协方差矩阵 D.    ...
怎么用机器学习算法识别中文关键字?
2024-02-05
在当今信息爆炸的时代,我们经常需要从大量文本中提取关键信息。关键字是文本中最能概括其主题和内容的单词或短语,对于文本分类、信息检索和自然语言处理等任务至关重要。本文将介绍如何使用机器学习算法来识别中文 ...
数据分析入门需要具备哪些数学知识?
2024-01-02
在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析作为一项关键技能,正受到越来越多人的关注和追求。然而,要想成为一名合格的数据分析师,掌握一定的数学知识是至关重要的。本文将介绍数据分析入 ...
数据科学家需要具备哪些数学技能?
2023-09-25
数据科学家是当今数字时代中的重要角色之一。他们通过分析和解释数据来揭示隐藏的见解和趋势,从而为企业和组织做出决策提供支持。在这个领域中,数学技能是必不可少的工具之一。本文将探讨数据科学家需要具备的数学 ...
如何对数据进行特征工程?
2023-06-15
特征工程是机器学习中至关重要的一步,它是将原始数据转换为机器学习算法可以使用的特征向量的过程。在本文中,我们将探讨如何对数据进行特征工程。 数据清洗 在进行特征工程之前,首先需要对原始数据进行清洗。这 ...
python numpy scipy 如何GPU并行计算?
2023-04-23
Python是一种高级编程语言,旨在提供易于使用的语法和自然的语言功能。NumPy和SciPy是两个流行的Python库,它们提供了高效的数学计算、科学计算和工程计算功能。 GPU并行计算是一种利用图形处理器(GPU)进行计算的 ...
XGBoost做分类问题时每一轮迭代拟合的是什么?
2023-04-18
XGBoost(eXtreme Gradient Boosting)是一种强大的集成学习算法,常用于解决分类和回归问题。它是一种基于决策树的机器学习算法,在解决分类问题时,每一轮迭代拟合的是残差。本文将对XGBoost分类问题中每一轮迭代 ...
用spss进行主成分分析,需要对数据进行标准化吗?
2023-04-18
主成分分析是一种常用的多元统计方法,它可以帮助我们减少数据维度、提取主要特征和结构,并将其转换为新的变量。在进行主成分分析时,一个重要的问题是是否需要对原始数据进行标准化。 首先,让我们了解一下什么是 ...
CNN卷积神经网络的全连接层为什么要有一层1024神经元?
2023-04-10
卷积神经网络(CNN)是一种在计算机视觉和自然语言处理等领域广泛应用的深度学习模型。在CNN中,全连接层是网络的最后一层,通常用于将卷积层和池化层输出的特征向量转换为分类或回归输出。 在许多CNN架构中,全连接 ...
卷积神经网络可以用于小目标检测吗?
2023-03-31
卷积神经网络(Convolutional Neural Networks,CNN)是一种广泛应用于计算机视觉领域的深度学习模型。CNN通过不断堆叠卷积层、池化层和全连接层等组件,可以自动从原始图像中提取出有意义的特征,从而实现诸如图像 ...

什么是数据科学

什么是数据科学
2022-10-18
什么是数据科学?它和已有的信息科学、统计学、机器学习等学科有什么不同?作为一门新兴的学科,数据科学依赖两个因素:一是数据的广泛性和多样性;二是数据研究的共性。现代社会的各行各业都充满了数据,这些数据 ...

基于密集行为的欺诈检测算法-LockInfer

基于密集行为的欺诈检测算法-LockInfer
2022-03-03
作者:小伍哥 来源:小伍哥聊风控 大家好,我是小伍哥,今天给大家分享的是一个基于密度的欺诈检测算法,思想非常牛逼,大家可以试试,先给出论文地址和代码 论文地址:http://pengcui.thumedialab.c ...

CDA Level Ⅲ 数据分析认证考试模拟题库(十八)

CDA Level Ⅲ 数据分析认证考试模拟题库(十八)
2021-10-12
不过,在出题前,要公布上一期Level Ⅲ 中91-95题的答案,大家一起来看! 92、B 94、C 96、请问选项中不是PCA转换计算流程的步骤是 B.样本集矩阵中心化 D.求样本集矩阵的协方差矩阵的特征值和特征 ...

数据挖掘中常用的基本降维思路及方法总结

数据挖掘中常用的基本降维思路及方法总结
2021-06-29
来源:数据STUDIO 作者:云朵君 01、降维的意义 降低无效、错误数据对建模的影响,提高建模的准确性。 少量切具有代表性的数据将大幅 ...
123456789 1/9

OK