cda

数字化人才认证

首页 > 行业图谱 >

123456789 6/9

简述几种人脸识别的主要方法

简述几种人脸识别的主要方法
2018-03-30
简述几种人脸识别的主要方法 人脸识别的方法很多,以下介绍一些主要的人脸识别方法。 (1)几何特征的人脸识别方法 几何特征可以是眼、鼻、嘴等的形状和它们之间的几何关系(如相互之间的距离)。这些算法识 ...

人脸识别中常用的几种分类器

人脸识别中常用的几种分类器
2018-03-28
人脸识别中常用的几种分类器 在人脸识别中有几种常用的分类器,一是最邻近分类器;二是线性分类器 (1)最邻近分类器 最近邻分类器是模式识别领域中最常用的分类方法之一,其直观简单,在通常的应用环境 ...

基于矩阵分解的隐因子模型

基于矩阵分解的隐因子模型
2018-03-25
基于矩阵分解的隐因子模型 推荐系统是现今广泛运用的一种数据分析方法。常见的如,“你关注的人也关注他”,“喜欢这个物品的用户还喜欢。。”“你也许会喜欢”等等。 常见的推荐系统分为基于内容的推荐与 ...

常见的几种矩阵分解方式

常见的几种矩阵分解方式
2018-03-23
常见的几种矩阵分解方式 1.三角分解(LU分解) 矩阵的LU分解是将一个矩阵分解为一个下三角矩阵与上三角矩阵的乘积。本质上,LU分解是高斯消元的一种表达方式。首先,对矩阵A通过初等行变换将其变为一个上三角 ...

R语言数组和矩阵

R语言数组和矩阵
2018-03-13
R语言数组和矩阵 1 数组 数组可以看成一个由递增下标表示的数据项的集合,例如数值。 数组的生成 如果一个向量需要在R中以数组的方式被处理,则必须含有一个维数向量作为它的dim属性。 维度向量由di ...

常用的机器学习&数据挖掘知识点

常用的机器学习&数据挖掘知识点
2018-03-07
常用的机器学习&数据挖掘知识点 Basis(基础): MSE(Mean Square Error 均方误差),LMS(LeastMean Square 最小均方),LSM(Least Square Methods 最小二乘法),MLE(MaximumLikelihood Estimation最 ...

数据预处理--数据降维

数据预处理--数据降维
2018-03-01
数据预处理--数据降维 数据规约产生更小但保持数据完整性的新数据集。在规约后的数据集上进行数据分析和挖掘将更有效率。 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映 ...

数据预处理的一些知识

数据预处理的一些知识
2018-02-24
数据预处理的一些知识 做研究时只要与数据分析相关就避免不了数据预处理。我们常见的预处理包括:标准化(规范化),归一化,零均值(化),白化,正则化……这些预处理的目的是什么呢?网上查的总是零零散 ...

数据挖掘之用户价值分析

数据挖掘之用户价值分析
2018-02-22
数据挖掘之用户价值分析 这里要介绍的是基于每个用户行为的综合性的分析和评定,主要包括用户的忠诚度和用户的价值。“以用户为中心”的理论要求网站不断优化改善用户的体验,进而提升用户的满意度,当用户的预 ...

机器学习python实战之决策树

机器学习python实战之决策树
2018-02-10
机器学习python实战之决策树 决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法。 每次划分数据集的 ...

数据挖掘概念综述

数据挖掘概念综述
2018-01-29
数据挖掘概念综述 数据挖掘又称从数据库中发现知识(KDD)、数据分析、数据融合(Data Fusion)以及决策支持。KDD一词首次出现在1989年8月举行的第11届国际联合人工智能学术会议上。随后在1991年、1993年和199 ...

一文读懂聚类算法

一文读懂聚类算法
2018-01-11
一文读懂聚类算法 1. 聚类的基本概念 1.1 定义 聚类是数据挖掘中的概念,就是按照某个特定标准(如距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中 ...

数据科学的基本内容

数据科学的基本内容
2018-01-08
数据科学的基本内容 什么是数据科学?它和已有的信息科学、统计学、机器学习等学科有什么不同?作为一门新兴的学科,数据科学依赖两个因素:一是数据的广泛性和多样性;二是数据研究的共性。现代社会的各行各业都 ...

克服大数据集群的挑战

克服大数据集群的挑战
2018-01-04
克服大数据集群的挑战 数据存储曾经是大数据的最大挑战。由于云计算基础设施的进步,存储数据不再是关键问题。如今,数据科学家所面临的最大问题是数据收集。 集群化使得大数据分析更容易。然而,集群也给数 ...

奇异值分解(SVD)原理详解及推导

奇异值分解(SVD)原理详解及推导
2017-12-22
奇异值分解(SVD)原理详解及推导 在网上看到有很多文章介绍SVD的,讲的也都不错,但是感觉还是有需要补充的,特别是关于矩阵和映射之间的对应关系。前段时间看了国外的一篇文章,叫A Singularly Valuable Deco ...

奇异值分解SVD的理解与应用

奇异值分解SVD的理解与应用
2017-12-22
奇异值分解SVD的理解与应用 为更好的理解这篇文章,现在这里列出几个文中出现的概念,想要更深的理解这些概念,可以看我的另一篇文章:关于特征值的理解。 向量的内积:两向量a=[a1,a2,…,an]和b=[b1,b2,…, ...

数据挖掘中,分类与聚类的区别

数据挖掘中,分类与聚类的区别
2017-12-11
数据挖掘中,分类与聚类的区别 本文对数据挖掘中,极为常见的两类算法:分类与聚类,做个梳理。 首先,来看看分类和聚类各自的一些定义描述。 分类(classification ): 分类算法需要学习,它通过学习找出描述 ...

数据挖掘中的分类和聚类

数据挖掘中的分类和聚类
2017-12-11
数据挖掘中的分类和聚类 分类(classification ):有指导的类别划分,在若干先验标准的指导下进行,效果好坏取决于标准选取的好坏。 它找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标 ...

利用spark做文本分类(朴素贝叶斯模型)

利用spark做文本分类(朴素贝叶斯模型)
2017-12-10
利用spark做文本分类(朴素贝叶斯模型) 朴素贝叶斯模型 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基 ...
R语言中样本平衡的几种方法
2017-12-06
R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性。在不平衡的数据中,任一算法都没法从样本量少的类中 ...
123456789 6/9

OK
客服在线
立即咨询