京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、感知机的概念
感知机是一种二类分类的线性模型,输入实例的特征向量,输出为实例的类别,即+1或者-1。感知机模型是神经网络和支持向量机的基础。
假设特征为
,类标签为
,由特征到类标签的映射可以表示为

这样的函数称为感知机。其中w和b为感知机的参数,w为权重,b为偏置。
为向量w与向量x之间的内积。
为符号函数:

为分隔超平面。
二、感知机模型的训练
1、目标函数
为了能够正确的对实例分类,我们的目标是能够求出分隔超平面,即求出参数w和b。在这里,分隔超平面存在的前提是数据集是线性可分的。
在训练参数和时,我们可以采用损失函数,并且使得损失函数最小化。感知机的训练中损失函数可以采用误分类点到分隔超平面的距离的总和。一个点被正确分类是指当
时,而原始标签
;类似的,当时
,而原始标签
。一个点到平面之间的距离公式为

对于误分类点
,有
,因此误分类点到分隔超平面之间的距离为

可以不考虑
,则对于误分类点集合m,感知机的损失函数为

我们的目标使得损失函数最小化,即
。我们可以使用梯度下降法求解这样的最小化问题。(梯度下降法),在这里我们采用梯度下降法的改进算法:随机梯度下降法。
2、感知机的训练过程
随机选取权重和偏置的初值
随机选取初始实例
如果
。
转至2,直到训练集中没有误分类点。
三、实例
选自《统计学习方法》,训练集为:正实例点是
,负实例点是
。

原始点集
MATLAB代码
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%读入数据
x=[3,3;4,3;1,1];
y=[1;1;-1];
%--初始化w和b
w = [0,0];
b = 0;
a = 1;%步长
%--选择未能初始化的点
flag = 0;
i = 1;
while flag~=1
while i <= 3
t = y(i)*(w*x(i,:)'+b);
if t <= 0
w = w + a*y(i,:)*x(i,:);
b = b + a*y(i,:);
i = 1;%重置i
break;
else
i = i+1;
end
if i == 4
flag = 1;
end
end
end
%画出分隔线
hold on
axis([0 5 0 5]);%axis一般用来设置axes的样式,包括坐标轴范围,可读比例等
for j = 1:3
plot(x(j,1),x(j,2),'.');
m(1,j) = (-b-w(1)*j)./(w(2));
end
j = 1:3;
plot(j,m);
分类结果
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27