京公网安备 11010802034615号
经营许可证编号:京B2-20210330
一、BP神经网络的概念
BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:

(三层BP神经网络模型)
BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。
二、BP神经网络的流程
在知道了BP神经网络的特点后,我们需要依据信号的前向传播和误差的反向传播来构建整个网络。
1、网络的初始化
假设输入层的节点个数为n,隐含层的节点个数为
,输出层的节点个数为m。输入层到隐含层的权重,隐含层到输出层的权重为wjk,输入层到隐含层的偏置为aj,隐含层到输出层的偏置为bk。学习速率为
,激励函数为
。其中激励函数为
取Sigmoid函数。形式为:
2、隐含层的输出
如上面的三层BP网络所示,隐含层的输出
为

3、输出层的输出

4、误差的计算
我们取误差公式为:

其中
为期望输出。我们记
,则可以表示为
以上公式中
5、权值的更新
权值的更新公式为:

这里需要解释一下公式的由来:
这是误差反向传播的过程,我们的目标是使得误差函数达到最小值,即,我们使用梯度下降法:
隐含层到输出层的权重更新

则权重的更新公式为:

输入层到隐含层的权重更新

其中

则权重的更新公式为:

6、偏置的更新
偏置的更新公式为:

隐含层到输出层的偏置更新

则偏置的更新公式为:
输入层到隐含层的偏置更新

其中

则偏置的更新公式为:

7、判断算法迭代是否结束
有很多的方法可以判断算法是否已经收敛,常见的有指定迭代的代数,判断相邻的两次误差之间的差别是否小于指定的值等等。
三、实验的仿真
在本试验中,我们利用BP神经网络处理一个四分类问题,最终的分类结果为:

MATLAB代码
主程序
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% BP的主函数
% 清空
clear all;
clc;
% 导入数据
load data;
%从1到2000间随机排序
k=rand(1,2000);
[m,n]=sort(k);
%输入输出数据
input=data(:,2:25);
output1 =data(:,1);
%把输出从1维变成4维
for i=1:2000
switch output1(i)
case 1
output(i,:)=[1 0 0 0];
case 2
output(i,:)=[0 1 0 0];
case 3
output(i,:)=[0 0 1 0];
case 4
output(i,:)=[0 0 0 1];
end
end
%随机提取1500个样本为训练样本,500个样本为预测样本
trainCharacter=input(n(1:1600),:);
trainOutput=output(n(1:1600),:);
testCharacter=input(n(1601:2000),:);
testOutput=output(n(1601:2000),:);
% 对训练的特征进行归一化
[trainInput,inputps]=mapminmax(trainCharacter');
%% 参数的初始化
% 参数的初始化
inputNum = 24;%输入层的节点数
hiddenNum = 50;%隐含层的节点数
outputNum = 4;%输出层的节点数
% 权重和偏置的初始化
w1 = rands(inputNum,hiddenNum);
b1 = rands(hiddenNum,1);
w2 = rands(hiddenNum,outputNum);
b2 = rands(outputNum,1);
% 学习率
yita = 0.1;
%% 网络的训练
for r = 1:30
E(r) = 0;% 统计误差
for m = 1:1600
% 信息的正向流动
x = trainInput(:,m);
% 隐含层的输出
for j = 1:hiddenNum
hidden(j,:) = w1(:,j)'*x+b1(j,:);
hiddenOutput(j,:) = g(hidden(j,:));
end
% 输出层的输出
outputOutput = w2'*hiddenOutput+b2;
% 计算误差
e = trainOutput(m,:)'-outputOutput;
E(r) = E(r) + sum(abs(e));
% 修改权重和偏置
% 隐含层到输出层的权重和偏置调整
dw2 = hiddenOutput*e';
db2 = e;
% 输入层到隐含层的权重和偏置调整
for j = 1:hiddenNum
partOne(j) = hiddenOutput(j)*(1-hiddenOutput(j));
partTwo(j) = w2(j,:)*e;
end
for i = 1:inputNum
for j = 1:hiddenNum
dw1(i,j) = partOne(j)*x(i,:)*partTwo(j);
db1(j,:) = partOne(j)*partTwo(j);
end
end
w1 = w1 + yita*dw1;
w2 = w2 + yita*dw2;
b1 = b1 + yita*db1;
b2 = b2 + yita*db2;
end
end
%% 语音特征信号分类
testInput=mapminmax('apply',testCharacter',inputps);
for m = 1:400
for j = 1:hiddenNum
hiddenTest(j,:) = w1(:,j)'*testInput(:,m)+b1(j,:);
hiddenTestOutput(j,:) = g(hiddenTest(j,:));
end
outputOfTest(:,m) = w2'*hiddenTestOutput+b2;
end
%% 结果分析
%根据网络输出找出数据属于哪类
for m=1:400
output_fore(m)=find(outputOfTest(:,m)==max(outputOfTest(:,m)));
end
%BP网络预测误差
error=output_fore-output1(n(1601:2000))';
k=zeros(1,4);
%找出判断错误的分类属于哪一类
for i=1:400
if error(i)~=0
[b,c]=max(testOutput(i,:));
switch c
case 1
k(1)=k(1)+1;
case 2
k(2)=k(2)+1;
case 3
k(3)=k(3)+1;
case 4
k(4)=k(4)+1;
end
end
end
%找出每类的个体和
kk=zeros(1,4);
for i=1:400
[b,c]=max(testOutput(i,:));
switch c
case 1
kk(1)=kk(1)+1;
case 2
kk(2)=kk(2)+1;
case 3
kk(3)=kk(3)+1;
case 4
kk(4)=kk(4)+1;
end
end
%正确率
rightridio=(kk-k)./kk
激活函数
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 激活函数 数据分析师培训
function [ y ] = g( x )
y = 1./(1+exp(-x));
end
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27