京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树原理:从数据集中找出决定性的特征对数据集进行迭代划分,直到某个分支下的数据都属于同一类型,或者已经遍历了所有划分数据集的特征,停止决策树算法。
每次划分数据集的特征都有很多,那么我们怎么来选择到底根据哪一个特征划分数据集呢?这里我们需要引入信息增益和信息熵的概念。
一、信息增益
划分数据集的原则是:将无序的数据变的有序。在划分数据集之前之后信息发生的变化称为信息增益。知道如何计算信息增益,我们就可以计算根据每个特征划分数据集获得的信息增益,选择信息增益最高的特征就是最好的选择。首先我们先来明确一下信息的定义:符号xi的信息定义为 l(xi)=-log2 p(xi),p(xi)为选择该类的概率。那么信息源的熵H=-∑p(xi)·log2 p(xi)。根据这个公式我们下面编写代码计算香农熵
def calcShannonEnt(dataSet):
NumEntries = len(dataSet)
labelsCount = {}
for i in dataSet:
currentlabel = i[-1]
if currentlabel not in labelsCount.keys():
labelsCount[currentlabel]=0
labelsCount[currentlabel]+=1
ShannonEnt = 0.0
for key in labelsCount:
prob = labelsCount[key]/NumEntries
ShannonEnt -= prob*log(prob,2)
return ShannonEnt
上面的自定义函数我们需要在之前导入log方法,from math import log。 我们可以先用一个简单的例子来测试一下
def createdataSet():
#dataSet = [['1','1','yes'],['1','0','no'],['0','1','no'],['0','0','no']]
dataSet = [[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,0,'no']]
labels = ['no surfacing','flippers']
return dataSet,labels
这里的熵为0.811,当我们增加数据的类别时,熵会增加。这里更改后的数据集的类别有三种‘yes'、‘no'、‘maybe',也就是说数据越混乱,熵就越大。
分类算法出了需要计算信息熵,还需要划分数据集。决策树算法中我们对根据每个特征划分的数据集计算一次熵,然后判断按照哪个特征划分是最好的划分方式。
axis表示划分数据集的特征,value表示特征的返回值。这里需要注意extend方法和append方法的区别。举例来说明这个区别
下面我们测试一下划分数据集函数的结果:
axis=0,value=1,按myDat数据集的第0个特征向量是否等于1进行划分。
接下来我们将遍历整个数据集,对每个划分的数据集计算香农熵,找到最好的特征划分方式
信息增益是熵的减少或数据无序度的减少。最后比较所有特征中的信息增益,返回最好特征划分的索引。函数测试结果为
接下来开始递归构建决策树,我们需要在构建前计算列的数目,查看算法是否使用了所有的属性。这个函数跟跟第二章的calssify0采用同样的方法
def majorityCnt(classlist):
ClassCount = {}
for vote in classlist:
if vote not in ClassCount.keys():
ClassCount[vote]=0
ClassCount[vote]+=1
sortedClassCount = sorted(ClassCount.items(),key = operator.itemgetter(1),reverse = True)
return sortedClassCount[0][0]
def createTrees(dataSet,labels):
classList = [example[-1] for example in dataSet]
if classList.count(classList[0]) == len(classList):
return classList[0]
if len(dataSet[0])==1:
return majorityCnt(classList)
bestfeature = choosebestfeatureToSplit(dataSet)
bestfeatureLabel = labels[bestfeature]
myTree = {bestfeatureLabel:{}}
del(labels[bestfeature])
featValue = [example[bestfeature] for example in dataSet]
uniqueValue = set(featValue)
for value in uniqueValue:
subLabels = labels[:]
myTree[bestfeatureLabel][value] = createTrees(splitDataSet(dataSet,bestfeature,value),subLabels)
return myTree
最终决策树得到的结果如下:
有了如上的结果,我们看起来并不直观,所以我们接下来用matplotlib注解绘制树形图。matplotlib提供了一个注解工具annotations,它可以在数据图形上添加文本注释。我们先来测试一下这个注解工具的使用。
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle = 'sawtooth',fc = '0.8')
leafNode = dict(boxstyle = 'sawtooth',fc = '0.8')
arrow_args = dict(arrowstyle = '<-')
def plotNode(nodeTxt,centerPt,parentPt,nodeType):
createPlot.ax1.annotate(nodeTxt,xy = parentPt,xycoords = 'axes fraction',\
xytext = centerPt,textcoords = 'axes fraction',\
va = 'center',ha = 'center',bbox = nodeType,\
arrowprops = arrow_args)
def createPlot():
fig = plt.figure(1,facecolor = 'white')
fig.clf()
createPlot.ax1 = plt.subplot(111,frameon = False)
plotNode('test1',(0.5,0.1),(0.1,0.5),decisionNode)
plotNode('test2',(0.8,0.1),(0.3,0.8),leafNode)
plt.show()
测试过这个小例子之后我们就要开始构建注解树了。虽然有xy坐标,但在如何放置树节点的时候我们会遇到一些麻烦。所以我们需要知道有多少个叶节点,树的深度有多少层。下面的两个函数就是为了得到叶节点数目和树的深度,两个函数有相同的结构,从第一个关键字开始遍历所有的子节点,使用type()函数判断子节点是否为字典类型,若为字典类型,则可以认为该子节点是一个判断节点,然后递归调用函数getNumleafs(),使得函数遍历整棵树,并返回叶子节点数。第2个函数getTreeDepth()计算遍历过程中遇到判断节点的个数。该函数的终止条件是叶子节点,一旦到达叶子节点,则从递归调用中返回,并将计算树深度的变量加一
def getNumleafs(myTree):
numLeafs=0
key_sorted= sorted(myTree.keys())
firstStr = key_sorted[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__=='dict':
numLeafs+=getNumleafs(secondDict[key])
else:
numLeafs+=1
return numLeafs
def getTreeDepth(myTree):
maxdepth=0
key_sorted= sorted(myTree.keys())
firstStr = key_sorted[0]
secondDict = myTree[firstStr]
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
thedepth=1+getTreeDepth(secondDict[key])
else:
thedepth=1
if thedepth>maxdepth:
maxdepth=thedepth
return maxdepth
测试结果如下
我们先给出最终的决策树图来验证上述结果的正确性
可以看出树的深度确实是有两层,叶节点的数目是3。接下来我们给出绘制决策树图的关键函数,结果就得到上图中决策树。
def plotMidText(cntrPt,parentPt,txtString):
xMid = (parentPt[0]-cntrPt[0])/2.0+cntrPt[0]
yMid = (parentPt[1]-cntrPt[1])/2.0+cntrPt[1]
createPlot.ax1.text(xMid,yMid,txtString)
def plotTree(myTree,parentPt,nodeTxt):
numLeafs = getNumleafs(myTree)
depth = getTreeDepth(myTree)
key_sorted= sorted(myTree.keys())
firstStr = key_sorted[0]
cntrPt = (plotTree.xOff+(1.0+float(numLeafs))/2.0/plotTree.totalW,plotTree.yOff)
plotMidText(cntrPt,parentPt,nodeTxt)
plotNode(firstStr,cntrPt,parentPt,decisionNode)
secondDict = myTree[firstStr]
plotTree.yOff -= 1.0/plotTree.totalD
for key in secondDict.keys():
if type(secondDict[key]).__name__ == 'dict':
plotTree(secondDict[key],cntrPt,str(key))
else:
plotTree.xOff+=1.0/plotTree.totalW
plotNode(secondDict[key],(plotTree.xOff,plotTree.yOff),cntrPt,leafNode)
plotMidText((plotTree.xOff,plotTree.yOff),cntrPt,str(key))
plotTree.yOff+=1.0/plotTree.totalD
def createPlot(inTree):
fig = plt.figure(1,facecolor = 'white')
fig.clf()
axprops = dict(xticks = [],yticks = [])
createPlot.ax1 = plt.subplot(111,frameon = False,**axprops)
plotTree.totalW = float(getNumleafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xOff = -0.5/ plotTree.totalW; plotTree.yOff = 1.0
plotTree(inTree,(0.5,1.0),'')
plt.show()
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27