
决策树之CART(分类回归树)详解,具体内容如下
1、CART分类回归树简介
CART分类回归树是一种典型的二叉决策树,可以处理连续型变量和离散型变量。如果待预测分类是离散型数据,则CART生成分类决策树;如果待预测分类是连续型数据,则CART生成回归决策树。数据对象的条件属性为离散型或连续型,并不是区别分类树与回归树的标准,例如表1中,数据对象xi的属性A、B为离散型或连续型,并是不区别分类树与回归树的标准。
表1
2、CART分类回归树分裂属性的选择
2.1 CART分类树——待预测分类为离散型数据
选择具有最小Gain_GINI的属性及其属性值,作为最优分裂属性以及最优分裂属性值。Gain_GINI值越小,说明二分之后的子样本的“纯净度”越高,即说明选择该属性(值)作为分裂属性(值)的效果越好。
对于样本集S,GINI计算如下:
其中,在样本集S中,Pk表示分类结果中第k个类别出现的频率。
对于含有N个样本的样本集S,根据属性A的第i个属性值,将数据集S划分成两部分,则划分成两部分之后,Gain_GINI计算如下:
其中,n1、n2分别为样本子集S1、S2的样本个数。
对于属性A,分别计算任意属性值将数据集划分成两部分之后的Gain_GINI,选取其中的最小值,作为属性A得到的最优二分方案:
对于样本集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本集S的最优二分方案:
所得到的属性A及其第i属性值,即为样本集S的最优分裂属性以及最优分裂属性值。
2.2 CART回归树——待预测分类为连续型数据
区别于分类树,回归树的待预测分类为连续型数据。同时,区别于分类树选取Gain_GINI为评价分裂属性的指标,回归树选取Gain_σ为评价分裂属性的指标。选择具有最小Gain_σ的属性及其属性值,作为最优分裂属性以及最优分裂属性值。Gain_σ值越小,说明二分之后的子样本的“差异性”越小,说明选择该属性(值)作为分裂属性(值)的效果越好。
针对含有连续型分类结果的样本集S,总方差计算如下:
其中,μ表示样本集S中分类结果的均值,Ck表示第k个分类结果。
对于含有N个样本的样本集S,根据属性A的第i个属性值,将数据集S划分成两部分,则划分成两部分之后,Gain_σ计算如下:
对于属性A,分别计算任意属性值将数据集划分成两部分之后的Gain_σ,选取其中的最小值,作为属性A得到的最优二分方案:
对于样本集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本集S的最优二分方案:
所得到的属性A及其第i属性值,即为样本集S的最优分裂属性以及最优分裂属性值。
3、CART分类回归树的剪枝
由于决策树的建立完全是依赖于训练样本,因此该决策树对训练样本能够产生完美的拟合效果。但这样的决策树对于测试样本来说过于庞大而复杂,可能产生较高的分类错误率。这种现象就称为过拟合。因此需要将复杂的决策树进行简化,即去掉一些节点解决过拟合问题,这个过程称为剪枝。
剪枝方法分为预剪枝和后剪枝两大类。预剪枝是在构建决策树的过程中,提前终止决策树的生长,从而避免过多的节点产生。预剪枝方法虽然简单但实用性不强,因为很难精确的判断何时终止树的生长。后剪枝是在决策树构建完成之后,对那些置信度不达标的节点子树用叶子结点代替,该叶子结点的类标号用该节点子树中频率最高的类标记。后剪枝方法又分为两种,一类是把训练数据集分成树的生长集和剪枝集;另一类算法则是使用同一数据集进行决策树生长和剪枝。常见的后剪枝方法有CCP(Cost Complexity Pruning)、REP(Reduced Error Pruning)、PEP(Pessimistic Error Pruning)、MEP(Minimum Error Pruning)。其中,悲观错误剪枝法PEP(Pessimistic Error Pruning)在“决策树之C4.5算法详解”中有详细介绍,感兴趣的小童鞋可以了解学习。这里我们详细介绍CART分类回归树中应用最广泛的剪枝算法——代价复杂性剪枝法CCP(Cost Complexity Pruning)。
代价复杂性剪枝法CCP(Cost Complexity Pruning)主要包含两个步骤:(1)从原始决策树T0开始生成一个子树序列{T0,T1,...,Tn},其中,Ti+1从Ti产生,Tn为根节点。(2)从第1步产生的子树序列中,根据树的真实误差估计选择最佳决策树。
CCP剪枝法步骤(1)
生成子树序列{T0,T1,...,Tn}的基本思想是从T0开始,裁剪Ti中关于训练数据集误差增加最小的分枝来得到Ti+1。实际上,当1棵树T在节点t处剪枝时,它的误差增加直观上认为是R(t)−R(Tt),其中,R(t)为在节点t的子树被裁剪后节点t的误差,R(Tt)为在节点t的子树没被裁剪时子树Tt的误差。然而,剪枝后,T的叶子数减少了L(Tt)−1,其中,L(Tt)为子树Tt的叶子数,也就是说,T的复杂性减少了。因此,考虑树的复杂性因素,树分枝被裁剪后误差增加率由下式决定:
其中,R(t)表示节点t的子树被裁剪后节点t的误差,R(t)=r(t)∗p(t),r(t)是节点t的误差率,p(t)是节点t上的样本个数与训练集中样本个数的比例。R(Tt)表示节点t的子树没被裁剪时子树Tt的误差,即子树Tt上所有叶子节点的误差之和。
Ti+1就是选择Ti中具有最小α值所对应的剪枝树。
例如:图1中ti表示决策树中第i个节点,A、B表示训练集中的两个类别,A、B之后的数据表示落入该节点分别属于A类、B类的样本个数。
图1,决策树中训练样本总个数为80。对于节点t4,其中,A类样本46个,B类样本4个,根据大多数原则,则节点t4中样本为A类,故节点t4的子树(t8、t9)被裁剪之后t4的误差为:450∗5080=480。节点t4的子树(t8、t9)被裁剪之前t4的误差为:145∗4580+25∗580=380。故α(t4)=480−3802−1=0.0125。类似过程,依次得到所有节点的误差增加率,如表2:
表2
从表2可以看出,在原始树T0行,4个非叶节点中t4的α值最小,因此,裁剪T0的t4节点的分枝得到T1;在T1行,虽然t2和t3的α值相同,但裁剪t2的分枝可以得到更小的决策树,因此,T2是裁剪T1中的t2分枝得到的。
CCP剪枝法步骤(2)
如何根据第1步产生的子树序列{T0,T1,...,Tn},选择出1棵最佳决策树是CCP剪枝法步骤(2)的关键。通常采用的方法有两种,一种是V番交叉验证(V-fold cross-validation),另一种是基于独立剪枝数据集。此处不在过分赘述,感兴趣的小童鞋,可以阅读参考文献[1][2][3]等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15