京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树之CART(分类回归树)详解,具体内容如下
1、CART分类回归树简介
CART分类回归树是一种典型的二叉决策树,可以处理连续型变量和离散型变量。如果待预测分类是离散型数据,则CART生成分类决策树;如果待预测分类是连续型数据,则CART生成回归决策树。数据对象的条件属性为离散型或连续型,并不是区别分类树与回归树的标准,例如表1中,数据对象xi的属性A、B为离散型或连续型,并是不区别分类树与回归树的标准。
表1
2、CART分类回归树分裂属性的选择
2.1 CART分类树——待预测分类为离散型数据
选择具有最小Gain_GINI的属性及其属性值,作为最优分裂属性以及最优分裂属性值。Gain_GINI值越小,说明二分之后的子样本的“纯净度”越高,即说明选择该属性(值)作为分裂属性(值)的效果越好。
对于样本集S,GINI计算如下:
其中,在样本集S中,Pk表示分类结果中第k个类别出现的频率。
对于含有N个样本的样本集S,根据属性A的第i个属性值,将数据集S划分成两部分,则划分成两部分之后,Gain_GINI计算如下:
其中,n1、n2分别为样本子集S1、S2的样本个数。
对于属性A,分别计算任意属性值将数据集划分成两部分之后的Gain_GINI,选取其中的最小值,作为属性A得到的最优二分方案:
对于样本集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本集S的最优二分方案:
所得到的属性A及其第i属性值,即为样本集S的最优分裂属性以及最优分裂属性值。
2.2 CART回归树——待预测分类为连续型数据
区别于分类树,回归树的待预测分类为连续型数据。同时,区别于分类树选取Gain_GINI为评价分裂属性的指标,回归树选取Gain_σ为评价分裂属性的指标。选择具有最小Gain_σ的属性及其属性值,作为最优分裂属性以及最优分裂属性值。Gain_σ值越小,说明二分之后的子样本的“差异性”越小,说明选择该属性(值)作为分裂属性(值)的效果越好。
针对含有连续型分类结果的样本集S,总方差计算如下:
其中,μ表示样本集S中分类结果的均值,Ck表示第k个分类结果。
对于含有N个样本的样本集S,根据属性A的第i个属性值,将数据集S划分成两部分,则划分成两部分之后,Gain_σ计算如下:
对于属性A,分别计算任意属性值将数据集划分成两部分之后的Gain_σ,选取其中的最小值,作为属性A得到的最优二分方案:
对于样本集S,计算所有属性的最优二分方案,选取其中的最小值,作为样本集S的最优二分方案:
所得到的属性A及其第i属性值,即为样本集S的最优分裂属性以及最优分裂属性值。
3、CART分类回归树的剪枝
由于决策树的建立完全是依赖于训练样本,因此该决策树对训练样本能够产生完美的拟合效果。但这样的决策树对于测试样本来说过于庞大而复杂,可能产生较高的分类错误率。这种现象就称为过拟合。因此需要将复杂的决策树进行简化,即去掉一些节点解决过拟合问题,这个过程称为剪枝。
剪枝方法分为预剪枝和后剪枝两大类。预剪枝是在构建决策树的过程中,提前终止决策树的生长,从而避免过多的节点产生。预剪枝方法虽然简单但实用性不强,因为很难精确的判断何时终止树的生长。后剪枝是在决策树构建完成之后,对那些置信度不达标的节点子树用叶子结点代替,该叶子结点的类标号用该节点子树中频率最高的类标记。后剪枝方法又分为两种,一类是把训练数据集分成树的生长集和剪枝集;另一类算法则是使用同一数据集进行决策树生长和剪枝。常见的后剪枝方法有CCP(Cost Complexity Pruning)、REP(Reduced Error Pruning)、PEP(Pessimistic Error Pruning)、MEP(Minimum Error Pruning)。其中,悲观错误剪枝法PEP(Pessimistic Error Pruning)在“决策树之C4.5算法详解”中有详细介绍,感兴趣的小童鞋可以了解学习。这里我们详细介绍CART分类回归树中应用最广泛的剪枝算法——代价复杂性剪枝法CCP(Cost Complexity Pruning)。
代价复杂性剪枝法CCP(Cost Complexity Pruning)主要包含两个步骤:(1)从原始决策树T0开始生成一个子树序列{T0,T1,...,Tn},其中,Ti+1从Ti产生,Tn为根节点。(2)从第1步产生的子树序列中,根据树的真实误差估计选择最佳决策树。
CCP剪枝法步骤(1)
生成子树序列{T0,T1,...,Tn}的基本思想是从T0开始,裁剪Ti中关于训练数据集误差增加最小的分枝来得到Ti+1。实际上,当1棵树T在节点t处剪枝时,它的误差增加直观上认为是R(t)−R(Tt),其中,R(t)为在节点t的子树被裁剪后节点t的误差,R(Tt)为在节点t的子树没被裁剪时子树Tt的误差。然而,剪枝后,T的叶子数减少了L(Tt)−1,其中,L(Tt)为子树Tt的叶子数,也就是说,T的复杂性减少了。因此,考虑树的复杂性因素,树分枝被裁剪后误差增加率由下式决定:
其中,R(t)表示节点t的子树被裁剪后节点t的误差,R(t)=r(t)∗p(t),r(t)是节点t的误差率,p(t)是节点t上的样本个数与训练集中样本个数的比例。R(Tt)表示节点t的子树没被裁剪时子树Tt的误差,即子树Tt上所有叶子节点的误差之和。
Ti+1就是选择Ti中具有最小α值所对应的剪枝树。
例如:图1中ti表示决策树中第i个节点,A、B表示训练集中的两个类别,A、B之后的数据表示落入该节点分别属于A类、B类的样本个数。
图1,决策树中训练样本总个数为80。对于节点t4,其中,A类样本46个,B类样本4个,根据大多数原则,则节点t4中样本为A类,故节点t4的子树(t8、t9)被裁剪之后t4的误差为:450∗5080=480。节点t4的子树(t8、t9)被裁剪之前t4的误差为:145∗4580+25∗580=380。故α(t4)=480−3802−1=0.0125。类似过程,依次得到所有节点的误差增加率,如表2:
表2
从表2可以看出,在原始树T0行,4个非叶节点中t4的α值最小,因此,裁剪T0的t4节点的分枝得到T1;在T1行,虽然t2和t3的α值相同,但裁剪t2的分枝可以得到更小的决策树,因此,T2是裁剪T1中的t2分枝得到的。
CCP剪枝法步骤(2)
如何根据第1步产生的子树序列{T0,T1,...,Tn},选择出1棵最佳决策树是CCP剪枝法步骤(2)的关键。通常采用的方法有两种,一种是V番交叉验证(V-fold cross-validation),另一种是基于独立剪枝数据集。此处不在过分赘述,感兴趣的小童鞋,可以阅读参考文献[1][2][3]等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15