
大数据的商业模式
著名管理学大师彼得·德鲁克曾说过,当今企业间的竞争,不是产品的竞争,而是商业模式的竞争。Rappa(2004)认为,商业模式规定了公司在价值链中的位置,指导着公司如何赚取剩余价值;并指出商业模式明确了一个公司开展什么活动来创造价值,在价值链中如何选取上下游合作伙伴以及怎样与客户达成交易、为客户提供价值。
目前,在大数据产业链上有三种大数据公司:
1)基于数据本身的公司(数据拥有者):拥有数据,不具有数据分析的能力;
2)基于技术的公司(技术提供者):技术供应商或者数据分析公司等;
3)基于思维的公司(服务提供者):挖掘数据价值的大数据应用公司;
不同的产业链角色有不同的盈利模式。最近,我按照以上的三种角色,对大数据的商业模式做了梳理和细分。
“数据拥有者”的商业模式
数据拥有者,这样的公司有三类:
1.大数据是业务核心,对大数据的重复利用是其发展的原动力,例如Google、Amazon、Inrix等;这种公司具有很强大的大数据技术能力,多数时候大数据技术本身主要用于自身的运作,具有三种产业链角色:数据(+技术)+服务;
2.大数据是作为提高生产效率、增加业务收入或者创造新的收入的使能器,非厂商的主流业务;例如运营商、银行等,运营商的主要业务是通过通信设备提供的各种网络语音和数据业务,目前运营商本身并不通过数据的重复利用为主要手段来盈利;
3.数据中间商,本身不具有创造数据的能力,从各种地方搜集数据进行整合,然后再提取有用的信息进行利用;
它们的商业模式有:
·2B:面向企业或者公共政府部门,提供数据分析结果的服务;例如Inrix在交通信息领域,面向GPS生产商、和交通规划部门、 FedEX和UPS等物流公司等,出售完整的当前甚至未来的交通状况的模式图或者数据库;
·2C:面向个人,提供基于数据分析结果的服务。例如:Inrix提供一个免费的智能手机应用程序,一方面它可以为用户提供免费的交通信息,另一方面它自己就得到了同步的数据。
·2D:租售数据/信息模式(数据资产分享和交易平台),新的商业模式,把数据/信息作为资产直接进行销售;例如:Twitter把它的数据都通过两个独立的公司授权给别人使用;VISA和MasterCard收集和分析了来自210个国家的15亿信用卡用户的650亿条交易记录,用来预测商业发展和客户的消费趋势。然后,它把这些分析结果卖给其他公司;
“技术提供者”的商业模式
技术提供者的2B商业模式是目前的主流,有4种类型:
·提供单点技术,pure-play为主,例如:Teradata为沃尔玛和Pop-Tarts这两个零售商提供大数据分析技术,来获得营销点子;
·提供整体解决方案,IT厂商为主,例如:IBM提供软硬一体的大数据解决方案;华为基于IT基础设施领域在存储和计算的优势,提供整体大数据解决方案;
·大数据空间出租模式:大数据计算基础设施上(与云结合),通过出租一个虚拟空间,从简单的文件存储,逐步扩展到数据聚合平台,例如腾讯开放云战略为大数据创业者提供了廉价的数据基础设施,使中小企业也有机会在大数据领域创新业务。
·Bigdata as a service,新的商业模式,提供E2E在线大数据技术或者解决方案。例如
RJMetrics,为电商提供快捷的商业智能在线服务,软件定价为 500 美元每月,客户只需在软件端输入特定数据,RJMetrics
便会将这些信息备份到安全的服务器上,并承诺在 7
日内优化数据用以分析,之后以清晰简洁的界面将数据分析结果反馈给客户。再例如,GoodData主要面向商业用户和IT企业高管,提供数据存储、性能报告、数据分析等工具,将所有商业智能分析所需的数据和任务都搬到了云上;
技术提供者的2C商业模式,目前较少,与cloud结合后有很大的空间,未来是趋势。例如:面向个人的家庭帐单、家庭耗能节能等或者面向个人数据的大数据解决方案。
“服务提供者”的商业模式
服务提供者有两种,一种是应用服务提供者,另一种是咨询服务提供者。
应用服务提供者是基于大数据技术,对外提供服务:
·2B:面向企业或者公共政府部门,提供数据分析结果的服务;例如前面提过的Inrix ;
·2C:面向个人,提供基于数据分析的服务;例如: FlightCaster 和FlyOnTime.us基于分析过去十年里每个航班的情况,然后将其与过去和现实的天气情况进行匹配,预测航班是否会晚点;
咨询服务提供者,提供技术服务支持、技术(方法、商业等)咨询,或者为企业提供类似数据科学家的咨询服务;
·2B商业模式:定位在某一具体行业,通过大量数据支持,对数据进行挖掘分析后预测相关主体的行为,以开展业务;利用数据挖掘技术帮助客户开拓精准营销或者新业务,有时企业收入来自于客户增值部分的分成。
例如德国咨询公司GFK帮助Telefonica
面向零售商、政府部门、公共机构提供基于地点的人员流动(Footfall)数据:以时间为维度(小时/天/月/年),在特定区域的人员人口统计数据(性别、年龄)和行动等数据;
这类企业成长非常快,一般擅长数据挖掘分析技术,帮助一些数据大户如银行、运营商等开展新的业务。
个人认为,目前产业链上真正的大数据玩家,应该是通过重复利用数据获得利益的公司,例如Google。Google所有的业务都是构建在大数据之上的,索引整个互联网网页,成功地建立了“网页搜索+广告”的商业模式,发展大数据并挖掘大数据的新价值是其不可不为的原动力;Google是大数据最大的玩家,抢占“人”生存数字化、智能化的入口;2012年Google总营收501.75亿美元,利润107.4亿美元,其9成利润来自广告。我在上一篇关于《大数据的商业本质》中提到,有咨询公司预测2017年全球大数据技术(包括技术、工具和服务,该处服务是指大数据支持、培训和专业服务)市场空间约500亿美金(2012年约为50亿美金),约等于Google 的2012年的总营收。“数据为王”或者“数据驱动”的业务内涵和模式是大数据时代的未来利益最大者。
大数据要想落地,必须有两个条件:一是丰富的数据源,二是强大的数据挖掘分析能力。目前,IT领域软件开源盛行,逐步降低了分析技术的门槛。很多企业在大数据战略上受挫,就是因为数据源匮乏。企业要想在大数据时代领先,必须多方合作等方式获取更多的数据,这是大数据的基础,也是大数据战略成败的核心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15