
数据挖掘中的分类和聚类
分类(classification ):有指导的类别划分,在若干先验标准的指导下进行,效果好坏取决于标准选取的好坏。
它找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。分类分析在数据挖掘中是一项比较重要的任务, 目前在商业上应用最多。分类的目的是学会一个分类函数或分类模型(也常常称作分类器),该模型能把数据库中的数据项映射到给定类别中的某一个类中。分类和回归都可用于预测,两者的目的都是从历史数据纪录中自动推导出对给定数据的推广描述,从而能对未来数据进行预测。与回归不同的是,分类的输出是离散的类别值,而回归的输出是连续数值。二者常表现为决策树的形式,根据数据值从树根开始搜索,沿着数据满足的分支往上走,走到树叶就能确定类别。
要构造分类器,需要有一个训练样本数据集作为输入。训练集由一组数据库记录或元组构成,每个元组是一个由有关字段(又称属性或特征)值组成的特征向量,此外,训练样本还有一个类别标记。一个具体样本的形式可表示为:(v1,v2,...,vn; c);其中vi表示字段值,c表示类别。分类器的构造方法有统计方法、机器学习方法、神经网络方法等等。不同的分类器有不同的特点。有三种分类器评价或比较尺度:1)预测准确度;2)计算复杂度;3)模型描述的简洁度。预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务。计算复杂度依赖于具体的实现细节和硬件环境,在数据挖掘中,由于操作对象是巨量的数据,因此空间和时间的复杂度问题将是非常重要的一个环节。对于描述型的分类任务,模型描述越简洁越受欢迎。另外要注意的是,分类的效果一般和数据的特点有关,有的数据噪声大,有的有空缺值,有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的。目前普遍认为不存在某种方法能适合于各种特点的数据。
聚类(clustering):没有先验标准,完全依靠事先的聚类原则(距离,近邻等),进行类别划分,效果好坏取决于聚类原则的选取。
是指根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的组,这样的一组数据对象的集合叫做簇,并且对每一个这样的簇进行描述的过程。它的目的是使得属于同一个簇的样本之间应该彼此相似,而不同簇的样本应该足够不相似。与分类规则不同,进行聚类前并不知道将要划分成几个组和什么样的组,也不知道根据哪些空间区分规则来定义组。其目的旨在发现空间实体的属性间的函数关系,挖掘的知识用以属性名为变量的数学方程来表示。当前,聚类技术正在蓬勃发展,涉及范围包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等领域,聚类分析已经成为数据挖掘研究领域中一个非常活跃的研究课题。常见的聚类算法包括:K-均值聚类算法、K-中心点聚类算法、CLARANS、BIRCH、CLIQUE、DBSCAN等。
通常,为有监督分类提供若干已标记的模式(预分类过),需要解决的问题是为一个新遇到的但无标记的模式进行标记。在典型的情况下,先将给定的无标记的模式用来学习〔训练),反过来再用来标记一个新模式。聚类需要解决的问题是将已给定的若千无标记的模式聚集起来使之成为有意义的聚类。从某种意义上说,标记也与聚类相关,但这些类型的标记是由数据驱动的,也就是说,只是从数据中得到这些标记。聚类与数据挖掘中的分类不同,在分类模块中,对于目标数据库中存在哪些类是知道的,要做的就是将每一条记录分别属于哪一类标记出来:与此相似但又不同的是,聚类是在预先不知道目标数据库到底有多少类的情况下,希望将所有的记录组成不同的类或者说“聚类”,并且使得在这种分类情况下,以某种度量为标准的相似性,在同一聚类之间最小化,而在不同聚类之间最大化。事实上,聚类算法中很多算法的相似性都是基于距离的,而且由于现实数据库中数据类型的多样性,关于如何度量两个含有非数值型字段的记录之间的距离的讨论有很多,并提出了相应的算法。在很多应用中,聚类分析得到的每一个类中的成员都可以被统一看待。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29