
数据挖掘中,分类与聚类的区别
本文对数据挖掘中,极为常见的两类算法:分类与聚类,做个梳理。
首先,来看看分类和聚类各自的一些定义描述。
分类(classification ):
分类算法需要学习,它通过学习找出描述并区分数据类的模型,以将模型应用于预测标记未知的对象类。即从历史数据纪录中通过学习,自动推导出对给定数据的推广描述,从而能对未来数据进行预测。
分类的目的产出,是一个分类函数或分类模型,亦称分类器,可以把数据库中的数据项映射到预设类别其中一个。
分类器通过训练样本数据集来构造。训练集由一组元组构成,每个元组是一个若干字段(又称属性或特征)值组成的特征向量,并包含有一个类别标记。一个具体样本的形式可表示为:(V1,V2,…,Vn; c);其中Vi表示字段值,c表示类别。
常见分类器的构造方法有决策树、贝叶斯、ANN等。
可通过一下标准来对分类效果进行评估:
1)准确率。模型正确地预测新样本的类标号的能力;
2)计算速度。包括构造模型以及使用模型进行分类的时间;
3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;
4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;
5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。
预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务。而对于描述型的分类任务,模型描述越简洁越受欢迎。
另外,分类的效果会样本的特点有关,有的数据噪声大,有的有空缺值,有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的。不存在某种方法能适合于各种特点的数据。
聚类(clustering):
聚类是如下所述的一个过程:
1) 根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的对象集合——簇
2) 对簇进行描述
聚类的目的是使得同簇的样本之间应该相似度最大化,而不同簇的样本应相似度最小化。
聚类的目的旨在发现空间实体的属性间的函数关系,表示挖掘所得知识的方程式,以属性名为变量。
常见聚类算法包括:k-means聚类、层次聚类、SOM聚类、FCM聚类等。
分类与聚类的不同:
分类
1) 预设类别,类别数不变
2) 样本有标记
3) 有指导学习
4) 适合类别或分类体系已经确定的场合
聚类
1) 无需预设类别,类别数不确定,类别在学习中生成
2) 样本无标记,学习中标记
3) 无监督学习
4) 合不存在分类体系、类别数不确定的场合
5) 是一种探索式的学习
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15