
数据挖掘中,分类与聚类的区别
本文对数据挖掘中,极为常见的两类算法:分类与聚类,做个梳理。
首先,来看看分类和聚类各自的一些定义描述。
分类(classification ):
分类算法需要学习,它通过学习找出描述并区分数据类的模型,以将模型应用于预测标记未知的对象类。即从历史数据纪录中通过学习,自动推导出对给定数据的推广描述,从而能对未来数据进行预测。
分类的目的产出,是一个分类函数或分类模型,亦称分类器,可以把数据库中的数据项映射到预设类别其中一个。
分类器通过训练样本数据集来构造。训练集由一组元组构成,每个元组是一个若干字段(又称属性或特征)值组成的特征向量,并包含有一个类别标记。一个具体样本的形式可表示为:(V1,V2,…,Vn; c);其中Vi表示字段值,c表示类别。
常见分类器的构造方法有决策树、贝叶斯、ANN等。
可通过一下标准来对分类效果进行评估:
1)准确率。模型正确地预测新样本的类标号的能力;
2)计算速度。包括构造模型以及使用模型进行分类的时间;
3)强壮性。模型对噪声数据或空缺值数据正确预测的能力;
4)可伸缩性。对于数据量很大的数据集,有效构造模型的能力;
5)模型描述的简洁性和可解释性。模型描述愈简洁、愈容易理解,则愈受欢迎。
预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务。而对于描述型的分类任务,模型描述越简洁越受欢迎。
另外,分类的效果会样本的特点有关,有的数据噪声大,有的有空缺值,有的分布稀疏,有的字段或属性间相关性强,有的属性是离散的而有的是连续值或混合式的。不存在某种方法能适合于各种特点的数据。
聚类(clustering):
聚类是如下所述的一个过程:
1) 根据“物以类聚”的原理,将本身没有类别的样本聚集成不同的对象集合——簇
2) 对簇进行描述
聚类的目的是使得同簇的样本之间应该相似度最大化,而不同簇的样本应相似度最小化。
聚类的目的旨在发现空间实体的属性间的函数关系,表示挖掘所得知识的方程式,以属性名为变量。
常见聚类算法包括:k-means聚类、层次聚类、SOM聚类、FCM聚类等。
分类与聚类的不同:
分类
1) 预设类别,类别数不变
2) 样本有标记
3) 有指导学习
4) 适合类别或分类体系已经确定的场合
聚类
1) 无需预设类别,类别数不确定,类别在学习中生成
2) 样本无标记,学习中标记
3) 无监督学习
4) 合不存在分类体系、类别数不确定的场合
5) 是一种探索式的学习
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28