
【spss典型相关分析】数学建模__SPSS_典型相关分析
典型相关分析
在对经济问题的研究和管理研究中,不仅经常需要考察两个变量之间的相关程度,而且还经常需要考察多个变量与多个变量之间即两组变量之间的相关性。典型相关分析就是测度两组变量之间相关程度的一种多元统计方法。
典型相关分析计算步骤
(一)根据分析目的建立原始矩阵 原始数据矩阵
?x11?x21
?
????xn1
x12x2xn2
?x1p?x2p?
?xnp
y11y21yn1
y12y22yn2
y1q??y2q??
??
?
?ynq???
(二)对原始数据进行标准化变化并计算相关系数矩阵
?R11
R = ?
?R21R12?
R22??
?为第一组变量其中R11,R22分别为第一组变量和第二组变量的相关系数阵,R12= R21
和第二组变量的相关系数
(三)求典型相关系数和典型变量
?1?1?1?1
计算矩阵A?R11R12R22R21以及矩阵B?R22R21R11R12的特征值和特征向量,分
别得典型相关系数和典型变量。
(四)检验各典型相关系数的显著性
第五节 利用SPSS进行典型相关分析
第一步,录入原始数据,如下表:X1 X2 X3 X4 X5 分别代表多孩率、综合节育率、初中及以上受教育程度的人口比例、人均国民收入和城镇人口比例。
第二步,调用CANCORR程序。
1、点击“Files→New→Syntax”打开如下对话框。
2、输入调用命令程序及定义典型相关分析变量组的命令。如图
输入时要注意“Canonical correlation.sps”程序所在的根目录,注意变量组的格式和空格。
第三步,执行程序。用光标选择这些命令,使其图黑,再点击运行键有典型相关分析结果。 ,即可得到所
输出结果
1
输出结果
2
主要结果的解释:
第一组变量相关系数
Correlations for Set-1
X1 X2
X1 1.0000 -.7610
X2 -.7610 1.0000
第二组变量相关系数
Correlations for Set-2
X3 X4 X5
X3 1.0000 .7712 .8488
X4 .7712 1.0000 .8777
X5 .8488 .8777 1.0000
第一组与第二组变量之间的相关系数
Correlations Between Set-1 and Set-2 X3 X4 X5
X1 -.5418 -.4528 -.4534
X2 .2929 .2528 .2447
典型相关系数
Canonical Correlations
1 .578
2 .025
维度递减检验结果(降维检验)
Test that remaining correlations are zero: Wilk's Chi-SQ DF Sig. 1 .666 10.584 6.000 .102 2 .999 .017 2.000 .992
标准化典型系数—第一组
Standardized Canonical Coefficients for Set-1 1 2
X1 -1.319 .797
X2 -.486 1.463
粗系数—第一组(没有标准化的,作者注) Raw Canonical Coefficients for Set-1 1 2
X1 -.131 .079
X2 -.091 .275
_
标准化典型系数—第二组
Standardized Canonical Coefficients for Set-2
1 2
X3 .997 -.261
X4 .292 2.075
X5 -.274 -1.743
粗系数—第二组(没有标准化的,作者注)
Raw Canonical Coefficients for Set-2
1 2
X3 .086 -.023
X4 .000 .002
X5 -.017 -.107
典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第一组 Canonical Loadings for Set-1
1 2
X1 -.949 -.316
X2 .517 .856
交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第一组原始变量
Cross Loadings for Set-1
1 2
X1 -.548 -.008
X2 .299 .022
典型负载系数(结构相关系数:典型变量与原始变量之间的相关系数)第二组 Canonical Loadings for Set-2
1 2
X3 .990 -.140
X4 .821 .344
X5 .829 -.143
交叉负载系数(某一组中的典型变量与另外一组的原始变量之间的相关系数)—第二组原始变量
Cross Loadings for Set-2
1 2
X3 .572 -.004
X4 .474 .009
X5 .479 -.004
Redundancy Analysis:(冗余分析)
(第一组原始变量总方差中由本组变式代表的比例)
Proportion of Variance of Set-1 Explained by Its Own Can. Var. Prop Var
CV1-1 .584
CV1-2 .416
(第一组原始变量总方差中由第二组的变式所解释的比例)
Proportion of Variance of Set-1 Explained by Opposite Can.Var. Prop Var
CV2-1 .195
CV2-2 .000
(第二组原始变量总方差中由本组变式代表的比例)
Proportion of Variance of Set-2 Explained by Its Own Can. Var. Prop Var
CV2-1 .780
CV2-2 .053
(第二组原始变量总方差中由第一组的变式所解释的比例)
Proportion of Variance of Set-2 Explained by Opposite Can. Var. Prop Var
CV1-1 .261
CV1-2 .000
------ END MATRIX -----
另外,在数据表中还输出了以下结果:
s1_cv001:第一组的第一个典型变量;
s2_cv001:第二组的第一个典型变量;
s1_cv002:第一组的第二个典型变量;
s2_cv002:第二组的第二个典型变量;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15