
SPSS详细操作:一致性检验和配对卡方检验
一、问题与数据
有两种方法可用于诊断某种癌症,A方法简单易行,成本低,患者更容易接受,B方法结果可靠,但操作繁琐,患者配合困难。某研究选择了53例待诊断的门诊患者,每个患者分别用A和B两种方法进行诊断(表1),判断两种方法诊断癌症有无差别,A方法是否可以代替B方法。
表1 进口药和国产药治疗效果
二、对数据结构的分析
之前介绍过成组设计的列联表,它的行变量和列变量代表的是一个事物的两个不同属性,以我们举过的A药和B药治疗急性心肌梗死患者疗效比较为例,例子中行变量“药物”和列变量“转归”是患者的两个不同特征。
但是配对设计的列联表却有些不同,它的行变量和列变量代表的是一个事物的同一属性,只是对这个属性的判断方法不同而已。如表1所示,行和列均指的是患者是否患有癌症,所不同的是一个是A方法,另一个是B方法。这种列联表最大的特点是行和列数目永远都是一样的。此时,再用成组计数资料的χ2检验就不合适了。这里我们就要用到Kappa一致性检验和配对χ2检验(McNemar检验)。
为什么同一配对设计计数资料咋还有两种检验方法呢?其实这两种方法各有侧重:
1、Kappa检验旨在评价两种方法是否存在一致性;配对χ2检验主要确定两种方法诊断结果是否有差别;
2、Kappa检验会利用列联表的全部数据,而配对χ2检验只利用“不一致“数据,如表1中b和c;
3、Kappa检验可计算Kappa值用于评价一致性大小,而配对χ2检验只能给出两种方法差别是否具有统计学意义的判断。
Kappa值判断标准:
Kappa≥0.75,说明两种方法诊断结果一致性较好;
0.4≤Kappa<0.75,说明两种方法诊断结果一致性一般;
Kappa<0.4,说明两种方法诊断结果一致性较差。
有关具体计算过程,我们这里可以交给计算机统计软件SPSS来完成。
三、SPSS分析方法
1. 数据录入
(1) 变量视图
(2) 数据视图
2. 加权个案:选择Data→weight cases→勾选Weight cases by,将频数放入Frequency Variable→OK。
3. 选择Analyze→Descriptive Statistics→Crosstabs
4. 选项设置
(1) 主对话框设置:将“A方法”和“B方法”两个变量分别放入Row(s)框和Column(s)框中(无位置要求)。
(2) Statistics设置:勾选McNemar和Kappa→Continue
(3) Cells设置:Counts中勾选Observed,输出实际观测频数;Percentages勾选Row和Column,输出行和列占比→Continue→OK
四、结果解读
表1 统计描述
表2 配对χ2检验
表3 Kappa一致性检验
表2中SPSS给出了McNemer检验的结果,P=0.022<0.05,提示两种方法诊断情况并不一致;表3中Kappa=0.506,P<0.001,提示两种方法诊断结果存在一致性,但是Kappa在0.4~0.75范围内,一致性一般。
五、撰写结论
A方法和B方法诊断结果一致性一般(Kappa=0.506,P<0.001); B诊断阳性率为67.9%,明显高于A诊断(50.9%),且差别具有统计学意义(P=0.022)。
PS: R*C配对列联表的χ2检验应用Bowker检验,SPSS的具体操作方法同McNemar检验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18