京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为数据领域极具影响力的专业认证,CDA 数据分析师认证始终紧密贴合行业动态与前沿需求。2025 年 7 月 25 日起,CDA Level I 和 Level II 考试大纲迎来重大更新,旨在让 CDA 认证更具前瞻性、实用性与严谨性,全方位提升认证价值,深度契合个人职业能力成长轨迹。
CDA Level I 主要面向零基础入行和转行就业人员、业务岗位想提升数据能力者。此次考纲更新,大幅扩充了贴合企业实际需求的数据能力、数据分析思维板块内容。新增商业数据分析框架,助力考生构建起从数据收集、处理到分析解读的完整思维链路,更好地理解如何运用数据为商业决策提供支撑。
战略与业务数据分析、归因分析内容的加入,使考生能站在更高视角,剖析业务成果产生的原因,通过数据洞察挖掘潜在业务增长点。标签体系与用户画像内容从 Level II 下放至此,帮助考生掌握基于数据构建用户画像的实操技能,为精准营销、个性化服务等业务场景筑牢根基。
在统计学知识方面,新增参数估计内容,让考生对数据特征的推断分析能力得到进一步提升。同时,数据架构与 ETL 相关内容从 Level II 下沉,使考生初步了解数据从产生到进入分析环节的流转过程,增强数据处理实操能力。
为突出对实际操作技能的考查,考纲减少了部分理论性内容,如删除数据分析的方法论、道德与行为准则相关内容,t 分布、卡方分布、F 分布及相关分析等内容调整至 Level II。SQL 函数、数据管理与数据安全内容也调整至 Level II。此外,还增加了 Excel、BI 等表格数据工具操作的考察比例,确保考生熟练掌握基础数据处理工具,能快速上手日常数据工作。指标体系与指标体系管理内容分别单列为一章,强化考生对业务指标体系搭建与管理的认知;业务数据分析与分析图表合并为数据分析方法统一考察,促使考生将理论与实践紧密结合,提升数据可视化表达及业务分析能力。
CDA Level II 面向有一定数据分析经验,期望提升技能水平、深化专业能力的从业者。考纲更新着重打造进阶数据分析思维,引入量化策略分析框架与流程,帮助考生构建更严谨、科学的数据分析策略,为企业制定数据驱动的决策提供有力依据。
数据整合与特征处理相关内容的加入,要求考生掌握从多源数据中提取有效信息、整合清洗数据,并进行特征工程处理的能力,为后续高效建模分析奠定基础。相关系数、t 分布、卡方分布、F 分布内容从 Level I 上浮至此,加深考生对统计学知识在数据分析中应用的理解深度,使其能运用更复杂的统计方法挖掘数据规律。
决策树相关内容从 Level III 下放,拓宽考生对数据挖掘算法的掌握范畴,学会运用决策树模型进行分类、预测等分析任务。数据管理与数据安全内容从 Level I 上浮,强调数据全生命周期管理及安全防护的重要性,培养考生在实际工作中保障数据资产安全的意识与能力。
此次更新删除了标签体系与用户画像、数字化工作方法、ETL 等下放到 Level I 的内容,以及 Arima 算法等调整至 Level III 的内容,使 Level II 考纲内容更加聚焦中高级数据分析技能。同时,考纲大幅增加 Python 数据处理、可视化、建模相关代码的考察比例,明确要求考生具备扎实的 Python 编程能力,熟练运用 Python 进行数据处理、分析及建模工作,以满足企业对数据分析师日益增长的编程技能需求。此外,数据可视化与统计制图单列为一章,着重提升考生数据可视化呈现能力,使其能够将复杂的数据结果以直观、易懂的图表形式展现,助力企业高效沟通与决策。
随着考纲内容的更新,CDA Level I 和 Level II 的考试题型数量及分值也进行了相应调整。全新的题目设计进一步强化对应用能力的测试,更精准地考查考生在实际工作场景中的技能运用水平,确保认证结果与个人职业能力成长紧密相连。以 Level I 为例,调整后单选题数量为 85 题,满分 100 分,考试时长 120 分钟。在有限时间内,考生需凭借扎实的知识储备与熟练的操作技能,完成对大量实际应用问题的解答,以此全面检验其对考纲内容的掌握程度及应用能力。
对于计划参加 CDA Level I 和 Level II 考试的考生而言,面对全新考纲,需及时调整备考策略。首先,深入研读新考纲,明确各章节知识点的调整变化,梳理出重点、难点内容,制定合理的学习计划,确保备考有的放矢。在学习过程中,注重理论知识与实际操作相结合,多参与真实业务场景案例分析,通过实践加深对知识点的理解与运用。针对新增的考察内容,如 Level I 中的商业数据分析框架、Level II 中的量化策略分析框架等,可借助专业教材、在线课程、行业论坛等资源,拓宽学习渠道,加深对前沿知识的掌握。同时,加强对 Python、Excel、BI 等工具的实操练习,提升编程及数据处理能力,适应考试对应用技能的高要求。此外,积极参加模拟考试,熟悉新的题型分布与考试节奏,合理分配答题时间,提前适应考试氛围,提升应试能力。
2025 年 CDA 数据分析师考纲的更新,是顺应行业发展趋势、满足企业人才需求的重要举措。它为数据分析师人才培养树立了新标杆,为从业者职业发展提供了更清晰的成长路径。无论是初入行业的新人,还是寻求职业突破的数据领域从业者,紧跟考纲变化,提升自身专业素养与应用能力,都将在数据驱动的时代浪潮中抢占先机,为个人职业发展与行业进步贡献力量。

数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31