京公网安备 11010802034615号
经营许可证编号:京B2-20210330
手把手教你协方差分析的SPSS操作
一、问题与数据
某研究将73例脑卒中患者随机分为现代理疗组(38例)和传统康复疗法组(35例)进行康复治疗,采用Fugl-Meyer运动功能评分法(FMA)分别记录治疗前、后的运动功能情况,部分数据如下。试问现代理疗和传统康复治疗对脑卒中患者运动功能的改善是否有差异?
二、对数据结构的分析
整个数据资料涉及2组患者(共73例),每名患者有康复治疗前、后2个数据,测量指标为FMA评分。由于治疗前的FMA分数会对治疗后的FMA分数产生影响,因此在比较现代理疗和传统康复疗法对患者运动功能的改善情况时,应把治疗前的FMA评分作为协变量进行调整,若满足协方差分析的应用条件,可采用完全随机设计的协方差分析。
协方差分析可以控制混杂因素对处理效应的影响,提高假设检验的效能和分析结果的精度。其应用条件包括:受试对象的观测指标满足独立性,各处理组的观测指标均来自正态分布总体,且方差相等。需要控制的协变量(自变量)与观测指标(因变量)之间存在线性关系,且每个组用协变量(自变量)与观测指标(因变量)进行直线回归时,回归直线的斜率相同(即各组回归直线平行)。
1. 各组回归直线是否平行的假设检验;
2. 各组观测指标方差是否相同的假设检验;
3. 协变量(自变量)与观测指标(因变量)之间是否存在线性关系的假设检验;
4. 控制协变量的影响后,各组调整的均数是否相等的假设检验。
三、SPSS分析方法
1、数据录入SPSS
(组别1=现代理疗组,组别2=传统康复疗法组,FMA1=治疗前FMA评分,FMA2=治疗后FMA评分)
2、选择Analyze→General Linear Model→Univariate
3、选项设置
A. 主对话框设置:选择观测指标(FMA2)到Dependent Variable窗口,组别变量到Fixed Factor(s)窗口,协变量(FMA1)到Covariate(s)窗口。
B. Model设置:点击Model按钮→选择Custom选项→将组别和FMA1分别放入Model窗口→将组别和FMA1同时选中(按住Ctrl后分别点击“组别”和“FMA1”),选入Model窗口构成交互项→点击Continue返回主对话框→OK。
放入分组变量与协变量的交互项是为了检验各组回归直线是否平行,若交互项结果满足P>0.05,则尚不能认为各组协变量与观测指标之间的回归直线斜率不等。在各组回归直线平行的条件成立时,才可以考虑进一步使用协方差分析。当处理因素与协变量有交互作用,即各组回归直线平行的条件不成立时(P<0.05),应对资料进一步处理或采用其他方法。
得到结果后,这一步仅需要查看Tests of Between-Subjects Effects的结果,组别*FMA1一行为各组回归直线是否平行进行假设检验的结果。F=0.703,P(Sig.)=0.405 >0.05,尚不能认为两组治疗前FMA评分与治疗后FMA评分之间回归直线的斜率不等,即满足回归直线平行的条件(这一步是协方差分析的假设检验1)。因此,可以做协方差分析,接下来需要重复上述步骤2、步骤3,并在Model设置中,将分组变量与协变量的交互项从模型中去掉,如下图所示。
C. Options设置:点击Options按钮→在Display部分勾选Descriptive statistics(给出各组及总的例数、均数和标准差)、Homogeneity tests(给出方差齐性检验结果)、Parameter estimates(给出协方差模型的各个参数)→将组别变量放入Display means for窗口(给出各组调整均数的估计值)→点击Continue返回主对话框→OK。
四、结果解读
Descriptive Statistics表格给出了治疗后FMA评分的部分统计信息,包括两组及总的例数(N)、均数(Mean)和标准差(Std. Deviation)。
Levene’s Test of Equality of Error Variances表格给出了方差齐性检验的结果,F=0.199,P(Sig.)=0.657,尚不能认为两组治疗后FMA评分的方差不等,即满足方差齐的条件(这一步是协方差分析的假设检验2)。
Tests of Between-Subjects Effects表格给出了协方差分析结果(不含交互项),其中FMA1一行为协变量与观测指标之间是否存在线性关系的假设检验结果。F=134.213,P(Sig.)<0.001,可以认为治疗前FMA评分与治疗后FMA评分之间存在线性关系,即满足线性关系的条件(这一步是协方差分析的假设检验3)。
组别一行为各组观测指标调整的均数是否相等的假设检验结果。F=7.866,P(Sig.)=0.007 <0.05,两组之间治疗后FMA评分的差异具有统计学意义,说明现代理疗和传统康复治疗对脑卒中患者运动功能的改善是有差异的。(这一步是协方差分析的假设检验4。协方差分析需要满足前3个假设后,才能根据假设检验4推断研究问题。如果前3个假设不满足,则不能进行协方差分析)
Parameter Estimates表格给出了协方差模型参数估计的结果。本例中的协方差模型为:
Estimated Marginal Means表格给出了协方差分析时观测指标的调整均数,各组调整的均数是利用参数估计的结果计算的。用各组FMA1的总平均数代入上面的协方差模型,即可得到观测指标的调整均数。
五、撰写结论
根据基线运动功能调整后,现代理疗方法对脑卒中患者进行康复治疗的运动功能得分为55(95% CI:52-57),传统康复疗法的运动功能得分为50(95% CI:48-53)。两种方法对脑卒中患者运动功能改善的差异具有统计学意义,现代理疗方法优于传统康复疗法(F=7.866,P=0.007)。
六、延伸阅读
本例如果用康复治疗前、后的FMA评分相减,生成一个差值,再对两组间的差值进行两样本均数比较的t检验,其结果如何呢?
t=2.527,P=0.014,两组间FMA评分变化的差异具有统计学意义。虽然t检验得出的结论与协方差分析的结论相同,但是把前、后测量值转换为差值之后,原有的数据信息也会有所损失。而且,如果两组间基线值有差异,差值更不能作为判别组间差别的依据。因此,将基线值作为协变量进行校正的协方差分析是科学可行的常用方法。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27