京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在线性代数中,我们都学过特征值与特征向量,但是对于这两者的意义以及应用却理解得不是那么深刻。机器学习中,我们也经常会遇到特征值与特征向量这两个概念,小编今天就给大家具体分享一下这两者的基本知识。
设A为n阶方阵,如果数λ和n为非零列向量x,并使得Ax=λx成立,那么就把λ叫做方阵A的一个特征值,x就是方阵A的对应于特征值λ的一个特征向量。
需要注意:
1.A是方阵。(对于非方阵来说,是不存在特征值的,但是会存在条件数。)
2.特征向量x为非零列向量。
如果把矩阵当做是运动,那么对于运动来说,最重要就是速度和方向了。
特征值表示运动的速度
特征向量表示运动的方向
接下来我们调整向量v的方向,使其看起来特殊一点
特征向量在一个矩阵的作用下作伸缩运动,特征值决定了伸缩的幅度。如果特征值大于1.那么所有属于此特征值的特征向量变长;当特征值大于0小于1时,那么特征向量就会缩短;当特征值小于0.这时特征向量缩过了界,就会反方向到达原点。
1.只有方阵才有特征值和特征向量 。因为总有特征多项式(特征方程),所以方阵总有特征值,但是并不是所有方阵都有实数特征解
2.实方阵一定有实数特征解
4.对于实对称矩阵或埃尔米特矩阵来说,不同特征值对应的特征向量必定正交(相互垂直)
四、矩阵对角化
矩阵对角化的充要条件为:n阶矩阵有n个线性无关的特征向量。
推断出:如果n阶方阵A有n个互不相同的特征值,那么方阵A可对角化。
并且:
对角阵的主对角元素为A的特征值
可逆矩阵P由A的n个线性无关的特征向量作列向量构成。
>>> a=np.array([[1,2,3],[3,2,5],[1,10,8]])
>>> e,q=np.linalg.eig(a)
>>> e
array([ 13.50864036, -0.42667365, -2.0819667 ])
>>> q
array([[-0.27543318, -0.6534998 , -0.23748816],
[-0.44255955, -0.44847532, -0.67779488],
[-0.85339183, 0.60976053, 0.69584012]])
>>>
>>> E=np.diag(e) # 对角阵
>>> E
array([[ 13.50864036, 0. , 0. ],
[ 0. , -0.42667365, 0. ],
[ 0. , 0. , -2.0819667 ]])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04