京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据结构和算法—用动态规划求解最短路径问题
在利用动态规划求解的过程中值得注意的就是是否包含最优子结构,简单来讲就是一个问题的最优解是不是包含着子问题的最优解。利用求解子问题的最优解最后得到整个问题的最优解,这是利用动态规划求解问题的基本前提。
二、最短路径问题
现有一张地图,各结点代表城市,两结点间连线代表道路,线上数字表示城市间的距离。如图1所示,试找出从结点A到结点E的最短距离。

图 1
三、利用动态规划求解最短路径问题
数据结构和算法—用动态规划求解最短路径问题
在解决这个问题的过程中,我其实是在尝试着使用不同的工具,首先我想对这种图处理,我使用了Gephi,Gephi是我在学习复杂网络的时候学会的一个工具,这个工具可以很方便的处理网络数据,能够动态的生成图的结构,下面是我用Gephi画出的图:

图 2
Gephi的另一个比较重要的工具就是可以在生成图的过程中,将图的数据导出,导出的数据可以方便的使用。
还是重点说说我是怎么利用动态规划的思想去求解这样的最短路径问题的:
1、描述最优解的结构
要使得从0到10的距离最短,令
为到第
个节点的最短距离,则
,用同样的方法可以求得
等。数据分析师培训
2、递归定义最优解的值

其中
表示与
边有连接的节点,而且
。
3、按自底向上的方式计算每个节点的最优值
此时我们就得利用递归公式分别求解
,这样最终便能得到最终的解。
结果为:

JAVA实现:
[java] view plain copy 在CODE上查看代码片派生到我的代码片
package org.algorithm.dynamicprogramming;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.io.Reader;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Stack;
/**
* 利用动态规划求解最短路径问题
*
* @author dell
*
*/
public class CalMinDistance {
// 计算最短的距离
public static int[] calMinDistance(int distance[][]) {
int dist[] = new int[distance.length];
dist[0] = 0;
for (int i = 1; i < distance.length; i++) {
int k = Integer.MAX_VALUE;
for (int j = 0; j < i; j++) {
if (distance[j][i] != 0) {
if ((dist[j] + distance[j][i]) < k) {
k = dist[j] + distance[j][i];
}
}
}
dist[i] = k;
}
return dist;
}
// 计算路径
public static String calTheRoute(int distance[][], int dist[]) {
Stack<Integer> st = new Stack<Integer>();
StringBuffer buf = new StringBuffer();
int j = distance.length - 1;
st.add(j);// 将尾插入
while (j > 0) {
// int num = 0;
for (int i = 0; i < j; i++) {
if (distance[i][j] != 0) {
// num++;
if (dist[j] - distance[i][j] == dist[i]) {
st.add(i);
}
}
}
j = st.peek();
}
while (!st.empty()) {
buf.append(st.pop()).append("-->");
}
return buf.toString();
}
// 读取文件
@SuppressWarnings("resource")
public static int[][] readTheFile(File f) {
Reader input = null;
try {
input = new FileReader(f);
} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
BufferedReader buf = null;
buf = new BufferedReader(input);
List<String> list = new ArrayList<String>();
try {
String str = buf.readLine();
while (str != null) {
list.add(str);
str = buf.readLine();
}
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
Iterator<String> it = list.iterator();
int distance[][] = new int[11][11];
while (it.hasNext()) {
String str1[] = it.next().split(",");
int i = Integer.parseInt(str1[0]);
int j = Integer.parseInt(str1[1]);
distance[i - 1][j - 1] = Integer.parseInt(str1[2]);
}
return distance;
}
public static void main(String args[]) {
// 读文件
File f = new File("D:" + File.separator + "distance_1.csv");
int distance[][] = readTheFile(f);
int dist[] = calMinDistance(distance);
System.out.println("最短路径长度为:" + dist[distance.length - 1]);
System.out.println("最短路径为:" + calTheRoute(distance, dist));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26