CDA数据科学研究院 CDA考试中心 企业服务 关于CDA

cda

全国校区

首页 > 技术干货

数据分析技术:事后多重比较的方法介绍;了解各种方法的原理才能做到“准确分析”

数据分析技术:事后多重比较的方法介绍;了解各种方法的原理才能做到“准确分析”
2017-03-23
数据分析技术:事后多重比较的方法介绍;了解各种方法的原理才能做到“准确分析” 基础准备 均值比较的假设检验是数据分析最重要的分析内容之一,根据参与比较的样本数量不同,使用的假设检验方法也不同,做 ...

简单易学的机器学习算法—极限学习机(ELM)

简单易学的机器学习算法—极限学习机(ELM)
2017-03-23
简单易学的机器学习算法—极限学习机(ELM) 一、极限学习机的概念 极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解单隐层神经网络的算法。 ELM最大的特点是对于传统的神经网络,尤其是单隐 ...

简单易学的机器学习算法—决策树之ID3算法

简单易学的机器学习算法—决策树之ID3算法
2017-03-22
简单易学的机器学习算法—决策树之ID3算法 一、决策树分类算法概述 决策树算法是从数据的属性(或者特征)出发,以属性作为基础,划分不同的类。例如对于如下数据集 (数据集) 其中,第一列和第二列为属性( ...

简单易学的机器学习算法—神经网络之BP神经网络

简单易学的机器学习算法—神经网络之BP神经网络
2017-03-22
简单易学的机器学习算法—神经网络之BP神经网络 一、BP神经网络的概念 BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经 ...

简单易学的机器学习算法—分类回归树CART

简单易学的机器学习算法—分类回归树CART
2017-03-22
简单易学的机器学习算法—分类回归树CART 分类回归树(Classification and Regression Tree,CART)是一种典型的决策树算法,CART算法不仅可以应用于分类问题,而且可以用于回归问题。 一、树回归的概念 对于 ...

优化算法—粒子群算法(PSO)

优化算法—粒子群算法(PSO)
2017-03-22
优化算法—粒子群算法(PSO) 一、粒子群算法的概述 粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食 ...

数据结构和算法—用动态规划求解最短路径问题

数据结构和算法—用动态规划求解最短路径问题
2017-03-22
数据结构和算法—用动态规划求解最短路径问题 在利用动态规划求解的过程中值得注意的就是是否包含最优子结构,简单来讲就是一个问题的最优解是不是包含着子问题的最优解。利用求解子问题的最优解最后得到整个问 ...

数据结构和算法—动态规划

数据结构和算法—动态规划
2017-03-22
数据结构和算法—动态规划 我一直最想做的就是机器学习,所以也都是在报机器学习的岗位,在BAT三家公司中,其实还是要讲百度吧,因为阿里在一面的时候就挂了,给我的理由是我投错了岗位(据面试官讲我应该去投算 ...

简单易学的机器学习算法—Rosenblatt感知机的对偶解法

简单易学的机器学习算法—Rosenblatt感知机的对偶解法
2017-03-21
简单易学的机器学习算法—Rosenblatt感知机的对偶解法 一、Rosenblatt感知机回顾 在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分 ...

简单易学的机器学习算法—基于密度的聚类算法DBSCAN

简单易学的机器学习算法—基于密度的聚类算法DBSCAN
2017-03-21
简单易学的机器学习算法—基于密度的聚类算法DBSCAN 一、基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别。 基于密度的 ...

论文中的机器学习算法——基于密度峰值的聚类算法

论文中的机器学习算法——基于密度峰值的聚类算法
2017-03-21
论文中的机器学习算法——基于密度峰值的聚类算法 下面还是主要来谈谈论文的主要思想。 算法的主要思想思想 在聚类算法中主要有这样几种: 划分的方法,如K-Means 层次的方 ...

简单易学的机器学习算法—非线性支持向量机

简单易学的机器学习算法—非线性支持向量机
2017-03-21
简单易学的机器学习算法—非线性支持向量机 一、回顾 介绍了支持向量机的基本概念,线性可分支持向量机的原理以及线性支持向量机的原理,线性可分支持向量机是线性支持向量机的基础。对于线性支持向量机,选择 ...

简单易学的机器学习算法—线性支持向量机

简单易学的机器学习算法—线性支持向量机
2017-03-21
简单易学的机器学习算法—线性支持向量机 一、线性支持向量机的概念 线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机 ...

简单易学的机器学习算法—线性可分支持向量机

简单易学的机器学习算法—线性可分支持向量机
2017-03-21
简单易学的机器学习算法—线性可分支持向量机 一、线性可分支持向量机的概念 线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可 ...

简单易学的机器学习算法—支持向量机

简单易学的机器学习算法—支持向量机
2017-03-20
简单易学的机器学习算法—支持向量机 支持向量机(Support Vector Machines, SVM)被公认为比较优秀的分类模型,有很多人对SVM的基本原理做了阐述,我在学习的过程中也借鉴了他们的研究成果,在我介绍基本 ...

机器学习-回归模型-欠拟合和过拟合

机器学习-回归模型-欠拟合和过拟合
2017-03-20
机器学习-回归模型-欠拟合和过拟合 1. 什么是欠拟合和过拟合 先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系 第一张图片拟合的函数和训练集误差较大,我们称这种情况为欠拟合 第二 ...

模式识别、机器学习、数据挖掘当中的各种距离总结

模式识别、机器学习、数据挖掘当中的各种距离总结
2017-03-20
模式识别、机器学习、数据挖掘当中的各种距离总结 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距 ...

用十张图解释机器学习的基本概念

用十张图解释机器学习的基本概念
2017-03-20
用十张图解释机器学习的基本概念 在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error:为什么低训练误差并不总是一件 ...

从曲线拟合问题窥视机器学习中的相关概念

从曲线拟合问题窥视机器学习中的相关概念
2017-03-20
从曲线拟合问题窥视机器学习中的相关概念 一直徘徊在机器学习的边缘未敢轻易造次并畏惧其基本原理思想,从每一本厚厚的参考资料中都可以看出机器学习是一门跨越概率论、决策论、信息论以及最优化的学科的综合学 ...

在MATLAB中进行基于SVM的数据分析

在MATLAB中进行基于SVM的数据分析
2017-03-20
在MATLAB中进行基于SVM的数据分析 MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支 ...

OK