K-means算法原理与R语言实例 聚类是将相似对象归到同一个簇中的方法,这有点像全自动分类。簇内的对象越相似,聚类的效果越好。支持向量机、神经网络所讨论的分类问题都是有监督的学习方式,现在我们所介绍的聚 ...
2017-03-17数据挖掘十大算法之Apriori详解 有时候,人们会对机器学习与数据挖掘这两个名词感到困惑。如果你翻开一本冠以机器学习之名的教科书,再同时翻开一本名叫数据挖掘的教材,你会发现二者之间有相当多重合的内容。 ...
2017-03-17python中pyc和pyo的作用 pyc文件,是Python编译后的字节码(bytecode)文件。只要你运行了py文件,python编译器就会自动生成一个对应的pyc字节码文件。这个pyc字节码文件,经过python解释器,会生成机器码运行 ...
2017-03-17Python变量作用域 1、作用域介绍 python中的作用域分4种情况: L:local,局部作用域,即函数中定义的变量; E:enclosing,嵌套的父级函数的局部作用域,即包含此函数的上级函数的局部作用域,但不是全局的; ...
2017-03-17数据挖掘十大算法之决策树详解(2) ID3算法 ID3和C4.5都是由澳大利亚计算机科学家Ross Quinlan开发的决策树构建算法,其中C4.5是在ID3上发展而来的。 ID3算法的核心是在决策树各个结点上应用信息增益准 ...
2017-03-17数据挖掘十大算法之决策树详解(1) 从分类问题开始 分类(Classification)任务就是确定对象属于哪个预定义的目标类。分类问题不仅是一个普遍存在的问题,而且是其他更加复杂的决策问题的基础,更是机器学习 ...
2017-03-17数据挖掘十大算法之CART详解 CART生成 CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将 ...
2017-03-16机器学习优化算法之爬山算法小结 机器学习的项目,不可避免的需要补充一些优化算法,对于优化算法,爬山算法还是比较重要的.鉴于此,花了些时间仔细阅读了些爬山算法的paper.基于这些,做一些总结. 目录 1. 爬山 ...
2017-03-16Python学习-函数、作用域 函数: 定义函数: >>> def do_nothing() pass 调用函数: >>> do_nothing() None:是Python中的一个特殊的值,它和False,空值是有区别的。 注意函数参数的传入 ...
2017-03-16Python学习-语句、语法 #: 注释,不支持多行注释 \\: 连接,当一行的程序太长时,可以使用连接符\\(反斜杠) 1、使用if、elif和 else进行标记 小于两个的选择: if 条件 : 语句段1 else : ...
2017-03-16机器学习-Cross Validation交叉验证Python实现 1.原理 1.1 概念 交叉验证(cross-validation)主要用于模型训练或建模应用中,如分类预测、pcr、pls回归建模等。在给定的样本空间中,拿出大部分样本作为训练集来 ...
2017-03-16机器学习中概率论知识复习 1 基本概念 概率论在机器学习中扮演着一个核心角色,因为机器学习算法的设计通常依赖于对数据的概率假设。 1.1 概率空间 说到概率,通常是指一个具有不确定性的event发生的 ...
2017-03-16机器学习实现与分析之五(高斯判别分析) 高斯判别分析(GDA)简介 首先,高斯判别分析的作用也是用于分类。对于两类样本,其服从伯努利分布,而对每个类中的样本,假定都服从高斯分布,则有: 这 ...
2017-03-15机器学习实现与分析之四(广义线性模型) 指数分布族 首先需要提及下指数分布族,它是指一系列的分布,只要其概率密度函数可以写成下面这样的形式: 一般的很多分布(如高斯分布,泊松分布,二项 ...
2017-03-15斯坦福机器学习实现与分析之二(线性回归) 回归问题提出 首先需要明确回归问题的根本目的在于预测。对于某个问题,一般我们不可能测量出每一种情况(工作量太大),故多是测量一组数据,基于此数据去预 ...
2017-03-15梯度下降法分析 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \\(\\begin{aligned} ...
2017-03-15批量梯度下降与随机梯度下降 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。 ...
2017-03-15从导数的物理意义理解梯度下降 机器学习中常会用随机梯度下降法求解一个目标函数L(Θ)的优化问题,并且常是最小化的一个优化问题: minL(Θ) 我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯 ...
2017-03-155个开源Python库,点亮你的机器学习之路 机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动提升,如集合工作流,设置数据源,以及在内部部署与云部署的资源之间切换等。 Python 是一款强大的 ...
2017-03-14机器学习常用算法(LDA,CNN,LR)原理简述 1.LDA LDA是一种三层贝叶斯模型,三层分别为:文档层、主题层和词层。该模型基于如下假设: 1)整个文档集合中存在k个互相独立的主题; 2)每一个主题是词上的多项 ...
2017-03-14剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26