京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从导数的物理意义理解梯度下降
机器学习中常会用随机梯度下降法求解一个目标函数 L(Θ) 的优化问题,并且常是最小化的一个优化问题:
min L(Θ)
我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯度法操作起来也很简单,不过是求偏导数而已,但是为什么是这样呢?为什么算个偏导数就能说下降得最快?初期并不很明了,后来看过一些数学相关的知识才稍微明白了一点,一下内容算是一个理解梯度的渐进过程。如果不当之处,欢迎指正。
以下关于梯度下降法,导数,偏导数的内容可在维基百科中找到,关于方向导数与梯度的内容可在高等数学书中找到。
梯度下降法
梯度下降法(Gradient descent)是一个最优化算法,通常也称为最速下降法。
梯度下降法,基于这样的观察:如果实值函数F(x)在点a处可微且有定义,那么函数F(x)在a点沿着梯度相反的方向 ??F(a) 下降最快。
因而,如果b=a?γ?F(a)
对于γ>0为一个够小数值时成立,那么F(a)≥F(b)。
考虑到这一点,我们可以从函数F的局部极小值的初始估计 x0 出发,并考虑如下序列
x0, x1, x2, …
使得xn+1=xn?γn?F(xn), n≥0。
因此可得到
F(x0)≥F(x1)≥F(x2)≥?,
如果顺利的话序列(xn)收敛到期望的极值。注意每次迭代步长γ可以改变。
下面的图片示例了这一过程,这里假设F定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数F为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数F值最小的点。
求解机器学习中的min问题,可以采用梯度下降法。
为何可能会有下面的缺点,可在梯度下降法的维基百科中看到更多内容。这里仅当一个搬运工而已,梯度下降法的缺点:
靠近极小值时速度减慢。
直线搜索可能会产生一些问题。
可能会’之字型’地下降。
导数
导数(Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数 f 的自变量在一点 x0 上产生一个增量 h 时,
函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数,记作f′(x0)、dfdx(x0)或dfdx∣∣x=x0.
几何意义上导数表示函数在这一点切线的斜率。
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
假设?是一个多元函数。例如:
z=f(x,y)=x2+xy+y2
f=x2+xy+y2的图像。我们希望求出函数在点(1, 1, 3)的对x的偏导数;对应的切线与xOz平面平行。
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。
一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1, 3)的与xOz平面平行的切线。上图中显示了函数f=x2+xy+y2的图像以及这个平面。下图中显示了函数在平面y = 1上是什么样的。我们把变量y视为常数,通过对方程求导,我们发现?在点(x, y, z)的。我们把它记为:
?z?x=2x+y,于是在点(1, 1, 3)的与xOz平面平行的切线的斜率是3。?f?x=3 在点(1, 1, 3),或称“f在(1, 1, 3)的关于x的偏导数是3”。
在几何意义上偏导数即为函数在坐标轴方向上的变化率。
方向导数
方向导数是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向导数是偏导数的概念的推广。
方向导数定义式:
方向导数计算公式(在推导方向导数与梯度关系时用到):
几何意义上方向导数为函数在某点沿着其他特定方向上的变化率。
梯度
在一个数量场中,函数在给定点处沿不同的方向,其方向导数一般是不相同的。那么沿着哪一个方向其方向导数最大,其最大值为多少,为此引进一个很重要的概念–梯度。函数在点p0处沿哪一方向增加的速度最快?
方向导数与梯度的关系
函数在某一点处的方向导数在其梯度方向上达到最大值,此最大值即梯度的范数。
这就是说,沿梯度方向,函数值增加最快。同样可知,方向导数的最小值在梯度的相反方向取得,此最小值为最大值的相反数,从而沿梯度相反方向函数值的减少最快。详细内容:方向导数与梯度。
在机器学习中往往是最小化一个目标函数L,理解了上面的内容,便很容易理解在SGD中常用的更新公式:
θ=θ?γ?L?θ
γ在机器学习中常被称为学习率(learning rate),也就是上面梯度下降法中的步长。
通过算出目标函数的梯度并在其反方向更新完参数θ,在此过程完成后也便是达到了函数值减少最快的效果,经过迭代以后目标函数即可很快地到达一个极小值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27