
从导数的物理意义理解梯度下降
机器学习中常会用随机梯度下降法求解一个目标函数 L(Θ) 的优化问题,并且常是最小化的一个优化问题:
min L(Θ)
我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯度法操作起来也很简单,不过是求偏导数而已,但是为什么是这样呢?为什么算个偏导数就能说下降得最快?初期并不很明了,后来看过一些数学相关的知识才稍微明白了一点,一下内容算是一个理解梯度的渐进过程。如果不当之处,欢迎指正。
以下关于梯度下降法,导数,偏导数的内容可在维基百科中找到,关于方向导数与梯度的内容可在高等数学书中找到。
梯度下降法
梯度下降法(Gradient descent)是一个最优化算法,通常也称为最速下降法。
梯度下降法,基于这样的观察:如果实值函数F(x)在点a处可微且有定义,那么函数F(x)在a点沿着梯度相反的方向 ??F(a) 下降最快。
因而,如果b=a?γ?F(a)
对于γ>0为一个够小数值时成立,那么F(a)≥F(b)。
考虑到这一点,我们可以从函数F的局部极小值的初始估计 x0 出发,并考虑如下序列
x0, x1, x2, …
使得xn+1=xn?γn?F(xn), n≥0。
因此可得到
F(x0)≥F(x1)≥F(x2)≥?,
如果顺利的话序列(xn)收敛到期望的极值。注意每次迭代步长γ可以改变。
下面的图片示例了这一过程,这里假设F定义在平面上,并且函数图像是一个碗形。蓝色的曲线是等高线(水平集),即函数F为常数的集合构成的曲线。红色的箭头指向该点梯度的反方向。(一点处的梯度方向与通过该点的等高线垂直)。沿着梯度下降方向,将最终到达碗底,即函数F值最小的点。
求解机器学习中的min问题,可以采用梯度下降法。
为何可能会有下面的缺点,可在梯度下降法的维基百科中看到更多内容。这里仅当一个搬运工而已,梯度下降法的缺点:
靠近极小值时速度减慢。
直线搜索可能会产生一些问题。
可能会’之字型’地下降。
导数
导数(Derivative)是微积分学中重要的基础概念。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。导数的本质是通过极限的概念对函数进行局部的线性逼近。
当函数 f 的自变量在一点 x0 上产生一个增量 h 时,
函数输出值的增量与自变量增量h的比值在h趋于0时的极限如果存在,即为f在x0处的导数,记作f′(x0)、dfdx(x0)或dfdx∣∣x=x0.
几何意义上导数表示函数在这一点切线的斜率。
偏导数
在数学中,一个多变量的函数的偏导数是它关于其中一个变量的导数,而保持其他变量恒定(相对于全导数,在其中所有变量都允许变化)。
假设?是一个多元函数。例如:
z=f(x,y)=x2+xy+y2
f=x2+xy+y2的图像。我们希望求出函数在点(1, 1, 3)的对x的偏导数;对应的切线与xOz平面平行。
因为曲面上的每一点都有无穷多条切线,描述这种函数的导数相当困难。偏导数就是选择其中一条切线,并求出它的斜率。通常,最感兴趣的是垂直于y轴(平行于xOz平面)的切线,以及垂直于x轴(平行于yOz平面)的切线。
一种求出这些切线的好办法是把其他变量视为常数。例如,欲求出以上的函数在点(1, 1, 3)的与xOz平面平行的切线。上图中显示了函数f=x2+xy+y2的图像以及这个平面。下图中显示了函数在平面y = 1上是什么样的。我们把变量y视为常数,通过对方程求导,我们发现?在点(x, y, z)的。我们把它记为:
?z?x=2x+y,于是在点(1, 1, 3)的与xOz平面平行的切线的斜率是3。?f?x=3 在点(1, 1, 3),或称“f在(1, 1, 3)的关于x的偏导数是3”。
在几何意义上偏导数即为函数在坐标轴方向上的变化率。
方向导数
方向导数是分析学特别是多元微积分中的概念。一个标量场在某点沿着某个向量方向上的方向导数,描绘了该点附近标量场沿着该向量方向变动时的瞬时变化率。方向导数是偏导数的概念的推广。
方向导数定义式:
方向导数计算公式(在推导方向导数与梯度关系时用到):
几何意义上方向导数为函数在某点沿着其他特定方向上的变化率。
梯度
在一个数量场中,函数在给定点处沿不同的方向,其方向导数一般是不相同的。那么沿着哪一个方向其方向导数最大,其最大值为多少,为此引进一个很重要的概念–梯度。函数在点p0处沿哪一方向增加的速度最快?
方向导数与梯度的关系
函数在某一点处的方向导数在其梯度方向上达到最大值,此最大值即梯度的范数。
这就是说,沿梯度方向,函数值增加最快。同样可知,方向导数的最小值在梯度的相反方向取得,此最小值为最大值的相反数,从而沿梯度相反方向函数值的减少最快。详细内容:方向导数与梯度。
在机器学习中往往是最小化一个目标函数L,理解了上面的内容,便很容易理解在SGD中常用的更新公式:
θ=θ?γ?L?θ
γ在机器学习中常被称为学习率(learning rate),也就是上面梯度下降法中的步长。
通过算出目标函数的梯度并在其反方向更新完参数θ,在此过程完成后也便是达到了函数值减少最快的效果,经过迭代以后目标函数即可很快地到达一个极小值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01