京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 奇异值分解 SVD(singular value decomposition)
1.1 SVD评价
优点: 简化数据, 去除噪声和冗余信息, 提高算法的结果
缺点: 数据的转换可能难以理解
1.2 SVD应用
(1) 隐性语义索引(latent semantic indexing, LSI)/隐性语义分析(latent semantic analysis, LSA)
在LSI中, 一个矩阵由文档和词语组成的.在该矩阵上应用SVD可以构建多个奇异值, 这些奇异值代表文档中的概念或主题, 可以用于更高效的文档搜索.
(2) 推荐系统
先利用SVD从数据中构建一个主题空间, 然后在该主题空间下计算相似度.
1.3 SVD分解
SVD是一种矩阵分解技术,其将原始的数据集矩阵A(m*n)分解为三个矩阵,
分解得到的三个矩阵的维度分别为m*m,m*n,n*n.其中
除了对角元素不为0,其它元素均为0,其对角元素称为奇异值,且按从大到小的顺序排列, 这些奇异值对应原始数据集矩阵A的奇异值,即A*A(T)的特征值的平方根.
在某个奇异值(r个)之后, 其它的奇异值由于值太小,被忽略置为0, 这就意味着数据集中仅有r个重要特征,而其余特征都是噪声或冗余特征.如下图所示:
问题: 如何选择数值r?
解答: 确定要保留的奇异值数目有很多启发式的策略,其中一个典型的做法就是保留矩阵中90%的能量信息.为了计算能量信息,将所有的奇异值求其平方和,从大到小叠加奇异值,直到奇异值之和达到总值的90%为止;另一种方法是,当矩阵有上万个奇异值时, 直接保留前2000或3000个.,但是后一种方法不能保证前3000个奇异值能够包含钱90%的能量信息,但是操作简单.
****SVD分解很耗时,通过离线方式计算SVD分解和相似度计算,是一种减少冗余计算和推荐所需时间的办法.
2. 基于协同过滤的推荐引擎
2.1 定义
协同过滤是通过将用户和其他用户的数据进行对比来实现推荐的.
例如: 试图对某个用户喜欢的电影进行预测,搜索引擎会发现有一部电影该用户还没看过,然后它会计算该电影和用户看过的电影之间的相似度, 如果相似度很高, 推荐算法就会认为用户喜欢这部电影.
缺点: 在协同过滤情况下, 由于新物品到来时由于缺乏所有用户对其的喜好信息,因此无法判断每个用户对其的喜好.而无法判断某个用户对其的喜好,也就无法利用该商品.
2.2 相似度计算
协同过滤利用用户对食物的意见来计算相似度,下图给出了一些用户对菜的评级信息所组成的矩阵:
定义相似度在0-1之间变化,且物品对越相似,其相似度值越大,可以使用公式 相似度 = 1/(1 + 距离) 来计算相似度.
计算距离的方法如下:
(1) 欧氏距离
(2)皮尔逊相关系数(pearson correlation)
度量两个向量间的相似度,该方法优于欧氏在于其对用户评级的量级不敏感,例如某个人对所有物品的评分都是5分,另一个人对所有物品评分都是1分,皮尔逊相关系数认为这两个评分向量是相等的. 不过皮尔逊相关系数的取值范围是(-1,1),通过0.5 + 0.5 * corrcoef()将其归一化到0-1之间.
(3) 余弦相似度( cosine similarity)
计算的是两个向量夹角的余弦值.其取值范围是(-1,1),因此也要将其归一化到(0,1)区间.
以下是这三种相似度计算方法的代码实现:
<span style="font-size:18px;">def eulidSim(in1,in2):
return 1.0/(1.0+la.norm(in1-in2))
def pearsonSim(in1,in2):
if len(in1) < 3: #检查是否存在3个或更多的点,小于的话,这两个向量完全相关
return 1.0
return 0.5 + 0.5 * corrcoef(in1,in2,rowvar = 0)[0][1]
</span><span style="font-size:18px;"> def cosSim(in1,in2):
num = float(in1.T * in2)
denom = la.norm(in1) * la.norm(in2)
return 0.5 + 0.5 * (num/denom)
</span>
2.3 餐馆菜推荐引擎
(1) 用处: 推荐餐馆食物. 给定一个用户, 系统会为此用户推荐N个最好的推荐菜.为了实现这一目的,要做到:
寻找用户没有评级的菜, 即在用户-物品矩阵中的0值;
在用户没有评级的所有物品中,对每个物品预计一个可能的评级分数.
对这些物品的评分从高到低进行排序,返回前n个物品
下面是实现代码:
<span style="font-size:18px;">#计算在给定相似度计算方法的条件下,用户user对物品item的估计评分值
def standEst(dataMat,user,simMea,item):
n = shape(dataMat)[1]
simTotal = 0.0
ratSimTotal = 0.0
for j in range(n):
userRate = dataMat[user,j]
if userRate == 0 :
continue
#得到对菜item和j都评过分的用户id,用来计算物品item和j之间的相似度
overlap = nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0]
if len(overlap) == 0:
similarity = 0
else:
#计算物品item和j之间的相似度(必须选取用户对这两个物品都评分的用户分数构成物品分数向量)
similarity = simMea(dataMat[overlap,item],dataMat[overlap,j])
simTotal += similarity
ratSimTotal += similarity * userRate
if simTotal ==0:
return 0
else:
return ratSimTotal/simTotal #归一化处理
#输入依次是数据矩阵,用户编号,返回的菜的个数,距离计算方法,获得物品评分的函数
def recommend(dataMat,user,n=3,simMea=cosSim,estMethod=standEst):
#返回user用户未评分的菜的下标
unratedItem = nonzero(dataMat[user,:].A == 0)[1]
if(len(unratedItem) == 0):
return 'you rated every one'
itemScore = []
#对每个没评分的菜都估计该用户可能赋予的分数
for item in unratedItem:
score = estMethod(dataMat,user,simMea,item)
itemScore.append((item,score))
#返回评分最高的前n个菜下标以及分数
return sorted(itemScore, key = lambda jj:jj[1],reverse = True)[:n]</span>
2.4 利用SVD提高推荐效果
实际的数据集得到的矩阵相当稀疏,因此可以先利用SVD将原始矩阵映射到低维空间中,; 然后再在低维空间中, 计算物品间的相似度,大大减少计算量.
其代码实现如下:
<span style="font-size:18px;">#通过SVD对原始数据矩阵降维,便于计算物品间的相似度
def scdEst(dataMat,user,simMea,item):
n = shape(dataMat)[1]
simTotal = 0.0
ratSimTotal = 0.0
u,sigma,vt = la.svd(dataMat) #sigma是行向量
sig4 = mat(eye(4) * sigma[:4]) #只利用最大的4个奇异值,将其转换为4*4矩阵,非对角元素为0
xformedItems = dataMat.T * u[:,:4] * sig4.I #得到n*4
for j in range(n):
userRate = dataMat[user,j]
if userRate == 0 or j == item:
continue
#得到对菜item和j都评过分的用户id,用来计算物品item和j之间的相似度
#overlap = nonzero(logical_and(dataMat[:,item].A>0,dataMat[:,j].A>0))[0]
#if len(overlap) == 0:
# similarity = 0
#else:
#计算物品item和j之间的相似度
# similarity = simMea(dataMat[overlap,item],dataMat[overlap,j])
similarity = simMea(xformedItems[item,:].T,xformedItems[j,:].T)
simTotal += similarity
ratSimTotal += similarity * userRate
if simTotal ==0:
return 0
else:
return ratSimTotal/simTotal #归一化处理</span>
3. 基于SVD的图像压缩
<span style="font-size:18px;">#打印矩阵
def printMat(in1,thresh=0.8):
for i in range(32):
for k in range(32):
if(float(in1[i,k]) > thresh):
print 1,
else:
print 0,
print ''
#利用SVD实现图像压缩,允许基于任意给定的奇异值来重构图像,默认去前3个奇异值
def imgCompress(numSV=3,thresh=0.8):
#32*32 matrix
my1 = []
for line in open('0_5.txt').readlines():
newrow = []
for i in range(32):
newrow.append(int(line[i]))
my1.append(newrow)
myMat = mat(my1)
print '***original matrix***'
printMat(myMat)
u,sigma,vt = la.svd(myMat)
#将sigma矩阵化,即sigrecon的对角元素是sigma的元素
sigrecon = mat(zeros((numSV,numSV)))
for k in range(numSV):
sigrecon[k,k] = sigma[k]
#重构矩阵
reconMat = u[:,:numSV] * sigrecon * vt[:numSV,:]
print '***reconstruct matrix***'
printMat(reconMat)</span>
以数字为例:数字0存储为32*32的矩阵,需要存储1024个数据; 通过实验发现只需要2个奇异值就能够很精确地对图像进行重构,u,vt的大小都是32*2的矩阵,再加上2个奇异值,则需要32*2*2+2=130个0-1值来存储0;通过对比发现,实现了几乎10倍的压缩比.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15