
5个开源Python库,点亮你的机器学习之路
机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动提升,如集合工作流,设置数据源,以及在内部部署与云部署的资源之间切换等。
Python 是一款强大的工具语言,被广泛应用在大数据和机器学习之中。以下推荐了 5 个 Python 库,帮你疏通机器学习之路。
PyWren
PyWren 允许你运行基于 Python 的科学计算工作负载,为 AWS Lamba 函数提供多个实例。The New Stack 中项目的配置文件对 PyWren 的描述是,使用 AWS Lamba 作为强大的并行处理系统,处理可以切分为多个小任务的项目,从而不用占据大量的内存或运行空间。
此项目有个缺点是 lambda 函数运行不能超过 300 秒。但如果是一份只需几分钟就能完成的工作,并且要在数据集中运行上千次,那 PyWren 会是不错的选择,它能在一定程度上将用户硬件上无法运行的工作平行化至云端。
Tfdeploy
Google 的 TensorFlow 框架在发布了 1.0 版本之后进入辉煌时期,这时人们要问了:如何才能在不使用 TensorFlow 本身的情况下,使用在 TensorFlow 上训练的框架?
Tfdeploy 能给你答案。它将经过训练的 TensorFlow 模型导出为“简单的基于 NumPy 的可调用对象”,即该模型可以在 Python 中使用,并以 Tfdeploy 和 NumPy math-and-stats 库为唯一的依赖关系。大多数可以在 TensorFlow 中执行的操作也可以在 Tfdeploy 中执行,你可以通过标准的 Python metaphors 来扩展库的行为(如,重载类)。
Luigi
编写批量作业只是处理数据堆的一部分,你还需要将所有作业串起来生成类似工作流和管道的东西。
Luigi 由 Spotify 创建,用于“解决与长期运行成批处理作业有关的管道问题”。开发者可以通过 Luigi 采用多个不同且不相关的数据处理任务,如,Hive 查询,Java 中的 Hadoop 任务,Scala 中的 Spark 任务,从数据库转储 table 等,还可以创建一个端到端运行它们的工作流。
对任务的整个描述以及依存性被打造为 Python 模块,而不是作为 XML 配置文件或其他数据格式创建,因此可以集成到其他以 Python 为中心的项目中。
Kubelib
如果你使用 Kubernetes 作为机器学习作业的编排系统,那么你会祈祷 Kubernetes 产生的问题不要比解决的问题还多。Kubelib 为 Kubernetes 提供了一组 Pythonic 接口,最初是为了协助 Jenkins 脚本工作。但是它可以在没有 Jenkins 的情况下使用,它可以处理 kubectl CLI 或 Kubernetes API 暴露的一切服务。
PyTorch 是一个 Torch7 团队开源的 Python 优先的深度学习框架,提供两个高级功能:强大的 GPU 加速 Tensor 计算(类似 numpy),构建基于 tape 的自动升级系统上的深度神经网络。你可以重用你喜欢的 python 包,如 numpy、scipy 和 Cython ,在需要时扩展 PyTorch。
通常使用Python是将其作为 numpy 的替代品,以使用强大的 GPU 能力,或作为一个深度学习研究平台,提供最大的灵活性和速度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15