京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘十大算法之CART详解
CART生成
CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布。
CART算法由以下两步组成:
决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;
决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准。
CART决策树的生成就是递归地构建二叉决策树的过程。CART决策树既可以用于分类也可以用于回归。本文我们仅讨论用于分类的CART。对分类树而言,CART用Gini系数最小化准则来进行特征选择,生成二叉树。 CART生成算法如下:
输入:训练数据集D,停止计算的条件:
输出:CART决策树。
根据训练数据集,从根结点开始,递归地对每个结点进行以下操作,构建二叉决策树:
设结点的训练数据集为D,计算现有特征对该数据集的Gini系数。此时,对每一个特征A,对其可能取的每个值a,根据样本点对A=a的测试为“是”或 “否”将D分割成D1和D2两部分,计算A=a时的Gini系数。
在所有可能的特征A以及它们所有可能的切分点a中,选择Gini系数最小的特征及其对应的切分点作为最优特征与最优切分点。依最优特征与最优切分点,从现结点生成两个子结点,将训练数据集依特征分配到两个子结点中去。
对两个子结点递归地调用步骤l~2,直至满足停止条件。
生成CART决策树。
算法停止计算的条件是结点中的样本个数小于预定阈值,或样本集的Gini系数小于预定阈值(样本基本属于同一类),或者没有更多特征。
一个具体的例子
下面来看一个具体的例子。我们使用《数据挖掘十大算法之决策树详解(1)》中图4-6所示的数据集来作为示例,为了便于后面的叙述,我们将其再列出如下:
首先对数据集非类标号属性{是否有房,婚姻状况,年收入}分别计算它们的Gini系数增益,取Gini系数增益值最大的属性作为决策树的根节点属性。根节点的Gini系数

当根据是否有房来进行划分时,Gini系数增益计算过程为
若按婚姻状况属性来划分,属性婚姻状况有三个可能的取值{married,single,divorced},分别计算划分后的
{married} | {single,divorced}
{single} | {married,divorced}
{divorced} | {single,married}
的Gini系数增益。
当分组为{married} | {single,divorced}时,Sl表示婚姻状况取值为married的分组,Sr表示婚姻状况取值为single或者divorced的分组

对比计算结果,根据婚姻状况属性来划分根节点时取Gini系数增益最大的分组作为划分结果,也就是{married} | {single,divorced}。
最后考虑年收入属性,我们发现它是一个连续的数值类型。我们在前面的文章里已经专门介绍过如何应对这种类型的数据划分了。对此还不是很清楚的朋友可以参考之前的文章,这里不再赘述。
对于年收入属性为数值型属性,首先需要对数据按升序排序,然后从小到大依次用相邻值的中间值作为分隔将样本划分为两组。例如当面对年收入为60和70这两个值时,我们算得其中间值为65。倘若以中间值65作为分割点。Sl作为年收入小于65的样本,Sr表示年收入大于等于65的样本,于是则得Gini系数增益为

其他值的计算同理可得,我们不再逐一给出计算过程,仅列出结果如下(最终我们取其中使得增益最大化的那个二分准则来作为构建二叉树的准则):
注意,这与我们之前在《数据挖掘十大算法之决策树详解(1)》中得到的结果是一致的。最大化增益等价于最小化子女结点的不纯性度量(Gini系数)的加权平均值,之前的表里我们列出的是Gini系数的加权平均值,现在的表里给出的是Gini系数增益。现在我们希望最大化Gini系数的增益。根据计算知道,三个属性划分根节点的增益最大的有两个:年收入属性和婚姻状况,他们的增益都为0.12。此时,选取首先出现的属性作为第一次划分。
接下来,采用同样的方法,分别计算剩下属性,其中根节点的Gini系数为(此时是否拖欠贷款的各有3个records)

与前面的计算过程类似,对于是否有房属性,可得

对于年收入属性则有:
最后我们构建的CART如下图所示:
最后我们总结一下,CART和C4.5的主要区别:
C4.5采用信息增益率来作为分支特征的选择标准,而CART则采用Gini系数;
C4.5不一定是二叉树,但CART一定是二叉树。
决策树很容易发生过拟合,也就是由于对train数据集适应得太好,反而在test数据集上表现得不好。这个时候我们要么是通过阈值控制终止条件避免树形结构分支过细,要么就是通过对已经形成的决策树进行剪枝来避免过拟合。另外一个克服过拟合的手段就是基于Bootstrap的思想建立随机森林(Random Forest)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16