
梯度下降法分析
梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为:
\(\begin{aligned} \theta_j=\theta_j-\alpha\frac{\partial\;J(\theta)}{\partial\theta_j} \end{aligned} \)
在回归算法的实验中,梯度下降的步长\(\alpha\)为0.01,当时也指出了该步长是通过多次时间找到的,且换一组数据后,算法可能不收敛。为什么会出现这样的问题呢?从梯度下降法的出发点可以看到,算法指出了行进的方向,但没有明确要行进多远,那么问题就来了,步子太小,走个一千一万年都到不了终点,而步子太大,扯到蛋不说,还可能越跑越远。
如上图,蓝色为一个碗形函数,其最小值在\(x=2\)那点,假如从\(x=0\)开始迭代,即是图中点1,此时知道应该向右走,但步子太大,直接到点2 了,同样点2处知道该往左走,结果又跑太远到点3了,…,这样越走越偏离我们的终点了。此情况的验证可以直接把前面回归算法的步长改大,比如把线性回归迭代步长改为10,要不了几次迭代结果就是Nan了。
这样有一点需要说明下,同样的步长\(\alpha\),为何从1到2和2到3的长度不一致?因为1-6点的梯度是逐步增大的,故虽然步长相同,但移动的距离却越来越远,从而进入了一个恶性循环了。
解决方法 对于上面提出的问题,解决方法有多种,下面就大致来说说,若有新的方法此处未提及,欢迎补充。
1.手动测试法
顾名思义,此方法需要手动进行多次实验,不停调整参数,观测实验效果,最终来确定出一个最优的步长。那么如何判断实验效果的好坏呢?一种常用的方法是观察代价函数(对线性回归而言)的变化趋势,如果迭代结束后,代价函数还在不停减少,则说明步长过小;若代价函数呈现出振荡现象,则说明步长过大。如此多次调整可得到较合理的步长值。
显然,该方法给出的步长对于这组训练样本而言是相对较优的,但换一组样本,则需要重新实验来调整参数了;另外,该方法可能会比较累人~~
2.固定步进
这是一个非常保险的方法,但需要舍弃较多的时间资源。既然梯度下降法只给出方向,那么我们就沿着这个方向走固定路程,即将梯度下降迭代公式修改为:
\(\begin{aligned} \theta_j=\theta_j-\alpha\;sign({\frac{\partial\;J(\theta)}{\partial\theta_j}}) \end{aligned} \)
其中的\(sign\)是符号函数。
那么\(\alpha\)取多大呢?就取可容许的最小误差,这样的迭代方式可以保证必然不会跨过最终点,但需要耗费更多次迭代。
3.步长衰减
步长衰减主要考虑到越接近终点,每一步越需要谨慎,故把步长减小,宁肯多走几步也绝不踏错一步。在吴恩达公开课中,他也提到了可在迭代中逐步减少步长。那如何减少步长?通常可以有这么几种做法:
A.固定衰减。比如每次迭代后,步长衰减为前一次的某个比例(如95%)。
B.选择性衰减。根据迭代状态来确定本次是否衰减,可以根据梯度或代价函数的情况来确定。比如,若此次迭代后代价函数增加了,则说明上次迭代步长过大,需要减小步长,否则保持不变,这么做的一个缺点是需要不停计算代价函数,训练样本过多可能会大大增加耗时;也可以根据梯度变化情况来判断,我们知道我们的终点是梯度为0的地方,若本次迭代后的梯度与前一次的梯度方向相反,则说明跨过了终点,需要减小步长。
显然,采用步长衰减的方式,同样也依赖于初始步长,否则可能不收敛。当然其相对于固定步长,则会更具稳定性。
4.自适应步长
此方法思想来源与步长衰减。在每次迭代,按照下面步骤来计算步长:
A.设置一个较大的初始步长值
B.计算若以此步长移动后的梯度
C.判断移动前后梯度方向是否会改变,若有改变,将步长减半,再进行A步;否则,以此步长为本次迭代的步长。
还是以上面那个图像来说明下。首先,初始点1在\(x=0\)处,按照初始步长则应该移动到点2\(x=5\)处,可点1和2处梯度方向改变了,那边步长减半则应该到点A\(x=2.5\)处,点1与A的梯度还是不同,那再将步长减半,则移动到点B\(x=1.25\)处,由于点1与B的梯度方向相同,则此次迭代将从1移动到B。
显然,该方法不会收到初始步长的影响,每次自动计算使得不会跨过终点的最大步长值。另一方面,从计算量上讲,有可能会比原来的方式更大,毕竟有得有失,你不用自己去一次次修改参数->运行程序->观察结果->…->修改参数。具体代码只需对原回归算法的代码略做修改即可。
将原回归算法迭代中的2行代码
1 Grad = CalcGrad(TX, TY, Theta, fun);
2 Theta = Theta + Alpha .* Grad;
修改为
1 Alpha = 16 * ones(n, 1);
2 Theta0 = Theta;
3 Grad0 = CalcGrad(TX, TY, Theta0, fun);
4 while(min(Alpha) > eps)
5 Theta1 = Theta0 + Alpha .* Grad0;
6 Grad1 = CalcGrad(TX, TY, Theta1, fun);
7 s = sign(Grad1 .* Grad0);
8 if (min(s)>=0)
9 break;
10 end
11
12 s(s==-1) = 0.5;
13 s(s==0) = 1;
14 Alpha = Alpha .* s;
15 end
16 Grad = Grad0;
17 Theta=Theta1;
View Code
即可实现。
补充说明
上面的说明是针对每一维的,对于步长需要每一维计算。若需要所有维度使用同一个步长,请先将训练样本归一化,否则很可能收敛不到你想要的结果。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29