梯度下降法分析
梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为:
\(\begin{aligned} \theta_j=\theta_j-\alpha\frac{\partial\;J(\theta)}{\partial\theta_j} \end{aligned} \)
在回归算法的实验中,梯度下降的步长\(\alpha\)为0.01,当时也指出了该步长是通过多次时间找到的,且换一组数据后,算法可能不收敛。为什么会出现这样的问题呢?从梯度下降法的出发点可以看到,算法指出了行进的方向,但没有明确要行进多远,那么问题就来了,步子太小,走个一千一万年都到不了终点,而步子太大,扯到蛋不说,还可能越跑越远。
如上图,蓝色为一个碗形函数,其最小值在\(x=2\)那点,假如从\(x=0\)开始迭代,即是图中点1,此时知道应该向右走,但步子太大,直接到点2 了,同样点2处知道该往左走,结果又跑太远到点3了,…,这样越走越偏离我们的终点了。此情况的验证可以直接把前面回归算法的步长改大,比如把线性回归迭代步长改为10,要不了几次迭代结果就是Nan了。
这样有一点需要说明下,同样的步长\(\alpha\),为何从1到2和2到3的长度不一致?因为1-6点的梯度是逐步增大的,故虽然步长相同,但移动的距离却越来越远,从而进入了一个恶性循环了。
解决方法 对于上面提出的问题,解决方法有多种,下面就大致来说说,若有新的方法此处未提及,欢迎补充。
1.手动测试法
顾名思义,此方法需要手动进行多次实验,不停调整参数,观测实验效果,最终来确定出一个最优的步长。那么如何判断实验效果的好坏呢?一种常用的方法是观察代价函数(对线性回归而言)的变化趋势,如果迭代结束后,代价函数还在不停减少,则说明步长过小;若代价函数呈现出振荡现象,则说明步长过大。如此多次调整可得到较合理的步长值。
显然,该方法给出的步长对于这组训练样本而言是相对较优的,但换一组样本,则需要重新实验来调整参数了;另外,该方法可能会比较累人~~
2.固定步进
这是一个非常保险的方法,但需要舍弃较多的时间资源。既然梯度下降法只给出方向,那么我们就沿着这个方向走固定路程,即将梯度下降迭代公式修改为:
\(\begin{aligned} \theta_j=\theta_j-\alpha\;sign({\frac{\partial\;J(\theta)}{\partial\theta_j}}) \end{aligned} \)
其中的\(sign\)是符号函数。
那么\(\alpha\)取多大呢?就取可容许的最小误差,这样的迭代方式可以保证必然不会跨过最终点,但需要耗费更多次迭代。
3.步长衰减
步长衰减主要考虑到越接近终点,每一步越需要谨慎,故把步长减小,宁肯多走几步也绝不踏错一步。在吴恩达公开课中,他也提到了可在迭代中逐步减少步长。那如何减少步长?通常可以有这么几种做法:
A.固定衰减。比如每次迭代后,步长衰减为前一次的某个比例(如95%)。
B.选择性衰减。根据迭代状态来确定本次是否衰减,可以根据梯度或代价函数的情况来确定。比如,若此次迭代后代价函数增加了,则说明上次迭代步长过大,需要减小步长,否则保持不变,这么做的一个缺点是需要不停计算代价函数,训练样本过多可能会大大增加耗时;也可以根据梯度变化情况来判断,我们知道我们的终点是梯度为0的地方,若本次迭代后的梯度与前一次的梯度方向相反,则说明跨过了终点,需要减小步长。
显然,采用步长衰减的方式,同样也依赖于初始步长,否则可能不收敛。当然其相对于固定步长,则会更具稳定性。
4.自适应步长
此方法思想来源与步长衰减。在每次迭代,按照下面步骤来计算步长:
A.设置一个较大的初始步长值
B.计算若以此步长移动后的梯度
C.判断移动前后梯度方向是否会改变,若有改变,将步长减半,再进行A步;否则,以此步长为本次迭代的步长。
还是以上面那个图像来说明下。首先,初始点1在\(x=0\)处,按照初始步长则应该移动到点2\(x=5\)处,可点1和2处梯度方向改变了,那边步长减半则应该到点A\(x=2.5\)处,点1与A的梯度还是不同,那再将步长减半,则移动到点B\(x=1.25\)处,由于点1与B的梯度方向相同,则此次迭代将从1移动到B。
显然,该方法不会收到初始步长的影响,每次自动计算使得不会跨过终点的最大步长值。另一方面,从计算量上讲,有可能会比原来的方式更大,毕竟有得有失,你不用自己去一次次修改参数->运行程序->观察结果->…->修改参数。具体代码只需对原回归算法的代码略做修改即可。
将原回归算法迭代中的2行代码
1 Grad = CalcGrad(TX, TY, Theta, fun);
2 Theta = Theta + Alpha .* Grad;
修改为
1 Alpha = 16 * ones(n, 1);
2 Theta0 = Theta;
3 Grad0 = CalcGrad(TX, TY, Theta0, fun);
4 while(min(Alpha) > eps)
5 Theta1 = Theta0 + Alpha .* Grad0;
6 Grad1 = CalcGrad(TX, TY, Theta1, fun);
7 s = sign(Grad1 .* Grad0);
8 if (min(s)>=0)
9 break;
10 end
11
12 s(s==-1) = 0.5;
13 s(s==0) = 1;
14 Alpha = Alpha .* s;
15 end
16 Grad = Grad0;
17 Theta=Theta1;
View Code
即可实现。
补充说明
上面的说明是针对每一维的,对于步长需要每一维计算。若需要所有维度使用同一个步长,请先将训练样本归一化,否则很可能收敛不到你想要的结果。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03