
Python学习-语句、语法
#: 注释,不支持多行注释
\: 连接,当一行的程序太长时,可以使用连接符\(反斜杠)
1、使用if、elif 和 else 进行标记
小于两个的选择:
if 条件 :
语句段1
else :
语句段2
大于两个的选择:
if 条件1 :
语句段1
elif 条件2 :
语句段2
…
else :
语句段3
2、使用while进行循环
while 条件:
语句段1
else: # 可选
语句段2
break: 跳出循环
continue:跳到循环开始
3、使用for迭代
for 变量 in 可迭代的对象
元组或列表在一次迭代过程产生一项,而字符串迭代会产生一个字符,对一个字典进行迭代将返回字典中的键。想对字典中的值进行迭代,可使用values()函数:
for value in accusation.values():
print(value)
为了以元组的形式返回键值对,可以使用字典的items() 函数:
for item in accusation.items():
print(item)
4、使用zip()并行迭代
zip()函数在最短序列“用完”时就会停止
5、使用range()生成自然数序列
range()函数的用法类似于使用切片:range(start、stop、step),start的默认值为0,唯一要求的参数值是stop,产生的最后一个数的值是stop的前一个,并且step的默认值是1。
例:得到从0到10的偶数
list(range(0,10,2))
推导式
从一个或多个迭代器快速简洁地创建数据结构的一种方法。
列表推导式1:最简单表示形式如下:
[expression for item in iterable]
例:将通过列表推导创建一个整数列表:
>>> number_list = [number for number in range(1,6)]
>>> number_list
[1,2,3,4,5]
第一个number变量为列表生成值,也就是说,把循环的结果放在列表number_list中
第二个number为循环变量,其中 第一个number 可以为表达式
列表推导式2:表示形式如下:
[expression for item in iterable if condition]
>>> rows = range(1,4)
>>> cols = range(1,3)
>>> cells = [(row,col) for row in rows for col in cols]
>>> for cell in cells:
print(cell)
(1, 1)
(1, 2)
(2, 1)
(2, 2)
(3, 1)
(3, 2)
>>>
字典推导式:表达式如下:
{ key_expression : value_expression for expression in iterable }
>>> word = 'letters'
>>> letter_counts = {letter: word.count(letter) for letter in set(word)}
>>> letter_counts
{'s': 1, 'r': 1, 't': 2, 'e': 2, 'l': 1}
>>>
集合推导式:表达式如下:
{ expression for expression in iterable }
>>> a_set = {number for number in range(1,6) if number % 3 == 1}
>>> a_set
{1, 4}
生成器推导式:
元组没有推导式,列表推导式的方括号变为圆括号后,圆括号之间的是生成器推导式,它返回的是一个生成器对象,生成器仅在运行中产生值,一个生成器只能运算一次,不能重新使用或备份。数据分析师培训
>>> number_thing = (number for number in range(1,6))
>>> type(number_thing)
<class 'generator'>
>>> number_list = list(number_thing)
>>> number_list
[1, 2, 3, 4, 5]
>>> try_again = list(number_thing)
>>> try_again
[]
>>>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11