
Python学习-语句、语法
#: 注释,不支持多行注释
\: 连接,当一行的程序太长时,可以使用连接符\(反斜杠)
1、使用if、elif 和 else 进行标记
小于两个的选择:
if 条件 :
语句段1
else :
语句段2
大于两个的选择:
if 条件1 :
语句段1
elif 条件2 :
语句段2
…
else :
语句段3
2、使用while进行循环
while 条件:
语句段1
else: # 可选
语句段2
break: 跳出循环
continue:跳到循环开始
3、使用for迭代
for 变量 in 可迭代的对象
元组或列表在一次迭代过程产生一项,而字符串迭代会产生一个字符,对一个字典进行迭代将返回字典中的键。想对字典中的值进行迭代,可使用values()函数:
for value in accusation.values():
print(value)
为了以元组的形式返回键值对,可以使用字典的items() 函数:
for item in accusation.items():
print(item)
4、使用zip()并行迭代
zip()函数在最短序列“用完”时就会停止
5、使用range()生成自然数序列
range()函数的用法类似于使用切片:range(start、stop、step),start的默认值为0,唯一要求的参数值是stop,产生的最后一个数的值是stop的前一个,并且step的默认值是1。
例:得到从0到10的偶数
list(range(0,10,2))
推导式
从一个或多个迭代器快速简洁地创建数据结构的一种方法。
列表推导式1:最简单表示形式如下:
[expression for item in iterable]
例:将通过列表推导创建一个整数列表:
>>> number_list = [number for number in range(1,6)]
>>> number_list
[1,2,3,4,5]
第一个number变量为列表生成值,也就是说,把循环的结果放在列表number_list中
第二个number为循环变量,其中 第一个number 可以为表达式
列表推导式2:表示形式如下:
[expression for item in iterable if condition]
>>> rows = range(1,4)
>>> cols = range(1,3)
>>> cells = [(row,col) for row in rows for col in cols]
>>> for cell in cells:
print(cell)
(1, 1)
(1, 2)
(2, 1)
(2, 2)
(3, 1)
(3, 2)
>>>
字典推导式:表达式如下:
{ key_expression : value_expression for expression in iterable }
>>> word = 'letters'
>>> letter_counts = {letter: word.count(letter) for letter in set(word)}
>>> letter_counts
{'s': 1, 'r': 1, 't': 2, 'e': 2, 'l': 1}
>>>
集合推导式:表达式如下:
{ expression for expression in iterable }
>>> a_set = {number for number in range(1,6) if number % 3 == 1}
>>> a_set
{1, 4}
生成器推导式:
元组没有推导式,列表推导式的方括号变为圆括号后,圆括号之间的是生成器推导式,它返回的是一个生成器对象,生成器仅在运行中产生值,一个生成器只能运算一次,不能重新使用或备份。数据分析师培训
>>> number_thing = (number for number in range(1,6))
>>> type(number_thing)
<class 'generator'>
>>> number_list = list(number_thing)
>>> number_list
[1, 2, 3, 4, 5]
>>> try_again = list(number_thing)
>>> try_again
[]
>>>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10