ID3算法
ID3和C4.5都是由澳大利亚计算机科学家Ross Quinlan开发的决策树构建算法,其中C4.5是在ID3上发展而来的。
ID3算法的核心是在决策树各个结点上应用信息增益准则选择特征,递归地构建决策树。具体方法是:从根结点(root node)开始,对结点计算所有可能的特征的信息增益,选择信息增益最大的特征作为结点的特征,由该特征的不同取值建立子结点;再对子结点递归地调用以上方法,构建决策树;直到所有特征的信息增益均很小或没有特征可以选择为止。最后得到一棵决策树。ID3相当于用极大似然法进行概率模型的选择。 下面我们给出一个更加正式的ID3算法的描述:
若D中所有实例属于同一类Ck,则T为单结点树,并将类Ck作为该结点的类标记,返回T;
若A=∅,则T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
否则,计算A中各特征对D的信息增益,选择信息增益最大的特征Ag;
(1) 如果Ag的信息增益小于阈值ϵ,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类标记,返回T;
(2) 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
对第i个子结点,以Di为训练集,以A−{Ag}为特征集,递归地调用步骤(1)~(3),得到子树Ti,返回Ti。
下面我们来看一个具体的例子,我们的任务是根据天气情况计划是否要外出打球:
首先来算一下根节点的熵:
然后再分别计算每一种划分的信息熵,比方说我们选择Outlook这个特征来做划分,那么得到的信息熵为
据此可计算采用Outlook这个特征来做划分时的信息增益为
同理,选用其他划分时所得到之信息增益如下:
取其中具有最大信息增益的特征来作为划分的标准,然后你会发现其中一个分支的熵为零(时间中阈值可以设定来惩罚过拟合),所以把它变成叶子,即得
对于其他熵不为零(或者大于预先设定的阈值)的分支,那么则需要做进一步的划分
根据上述的规则继续递归地执行下去。最终,我们得到了如下一棵决策树。
C4.5算法
C4.5是2006年国际数据挖掘大会票选出来的十大数据挖掘算法之首,可见它应该是非常powerful的!不仅如此,事实上,C4.5的执行也相当的straightforward。
C4.5算法与ID3算法相似,C4.5算法是由ID3算法演进而来的。C4.5在生成的过程中,用信息增益比来选择特征。下面我们给出一个更加正式的C4.5算法的描述:
如果D中所有实例属于同一类Ck,则置T为单结点树,并将Ck作为该结点的类,返回T;
如果A=∅,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类,返回T;
否则,计算A中各特征对D的信息增益比,选择信息增益比最大的特征Ag;
(1) 如果Ag的信息增益比小于阈值ϵ,则置T为单结点树,并将D中实例数最大的类Ck作为该结点的类,返回T;
(2) 否则,对Ag的每一可能值ai,依Ag=ai将D分割为若干非空子集Di,将Di中实例数最大的类作为标记,构建子结点,由结点及其子结点构成树T,返回T;
对结点i,以Di为训练集,以A−{Ag}为特征集,递归地调用步骤(1)~(3),得到子树Ti,返回Ti。
How to do it in practice?
易见,C4.5跟ID3的执行步骤非常类似,只是在划分时所采用的准则不同。我们这里不再赘述。但是这里可以来看看在实际的数据分析中,该如何操作。我们所使用的数据是如下所示的一个csv文件,文件内容同本文最初给出的Play Ball例子中的数据是完全一致的。
使用Weka进行数据挖掘是非常容易的,你不再需要像R语言或者MATLAB那样编写代码或者调用函数。基于GUI界面,在Weka中你只需要点点鼠标即可!首先我们单击“Explorer”按钮来打开操作的主界面,如下图所示。
然后我们单击“Open File…”,并从相应的目录下选择你要用来进行模型训练的数据文件,如下图所示。
Weka提供了非常易于操作的各种数据预处理功能,你可以自己尝试探索一下。注意到属性Day其实在构建决策树时是不需要的,我选中该属性,并将其移除,如下图所示。
完成数据预处理后,我们就可以开始进行模型训练了。因为我们是要建立决策树,所以选择“Classify”选项卡,然后在“Classifier”中选择J48。你可以能会疑惑我们不是要使用C4.5算法建立决策树吗?为什么要选择J48呢?其实J48是一个开源的C4.5的Java实现版本(J48 is an open source Java implementation of the C4.5 algorithm),所以J48就是C4.5。 数据分析师培训
然后你可以自定义的选择“Test options”中的一些测试选项,这里我们不做过多说明。然后单击“Start”按钮,Weka就为我们建立了一棵决策树,你可以从“Classifier output”栏目中看到模型训练的一些结果。但是对于决策树而言,你可以觉得文字看起来还不够直观。不要紧,Weka还为你提供了可视化的决策树建模呈现。为此,你需要右键单击刚刚训练好的模型,然后从右键菜单中选择“Visualize tree”,如下图所示。
最后我们得到了一棵与前面例子中相一致的决策树,如下图所示。
在后续的决策树系列文章中,我们将继续深入探讨CART算法等相关话题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03