简单易学的机器学习算法—线性支持向量机 一、线性支持向量机的概念 线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机 ...
2017-03-21简单易学的机器学习算法—线性可分支持向量机 一、线性可分支持向量机的概念 线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可 ...
2017-03-21简单易学的机器学习算法—支持向量机 支持向量机(Support Vector Machines, SVM)被公认为比较优秀的分类模型,有很多人对SVM的基本原理做了阐述,我在学习的过程中也借鉴了他们的研究成果,在我介绍基本 ...
2017-03-20机器学习-回归模型-欠拟合和过拟合 1. 什么是欠拟合和过拟合 先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系 第一张图片拟合的函数和训练集误差较大,我们称这种情况为欠拟合 第二 ...
2017-03-20模式识别、机器学习、数据挖掘当中的各种距离总结 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距 ...
2017-03-20用十张图解释机器学习的基本概念 在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error:为什么低训练误差并不总是一件 ...
2017-03-20从曲线拟合问题窥视机器学习中的相关概念 一直徘徊在机器学习的边缘未敢轻易造次并畏惧其基本原理思想,从每一本厚厚的参考资料中都可以看出机器学习是一门跨越概率论、决策论、信息论以及最优化的学科的综合学 ...
2017-03-20在MATLAB中进行基于SVM的数据分析 MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支 ...
2017-03-20Python自然语言处理:词干、词形与MaxMatch算法 自然语言处理中一个很重要的操作就是所谓的stemming 和 lemmatization,二者非常类似。它们是词形规范化的两类重要方式,都能够达到有效归并词形的目的,二者既 ...
2017-03-18在R中使用支持向量机(SVM)进行数据挖掘(下) 第二种使用svm()函数的方式则是根据所给的数据建立模型。这种方式形式要复杂一些,但是它允许我们以一种更加灵活的方式来构建模型。它的函数使用格式如下(注意 ...
2017-03-18在R中使用支持向量机(SVM)进行数据挖掘(上) 在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务。请在使用相关函数之前,安装并正确引用e1071包。该包中最重要的一个函 ...
2017-03-18Python机器学习之Logistic回归 大数据时代,数据犹如一座巨大的金矿,等待我们去发掘。而机器学习和数据挖掘的相关技术,无疑就是你挖矿探宝的必备利器!工欲善其事,必先利其器。很多初涉该领域的人,最先困惑 ...
2017-03-18牛顿法解机器学习中的Logistic回归 这仍然是近期系列文章中的一篇。在这一个系列中,我打算把机器学习中的Logistic回归从原理到应用详细串起来。最初我们介绍了在Python中利用Scikit-Learn来建立Logistic回归分 ...
2017-03-18从朴素贝叶斯分类器到贝叶斯网络(下) 三、贝叶斯网络 贝叶斯网络(Bayesian Network)是一种用于表示变量间依赖关系的数据结构,有时它又被称为信念网络(Belief Network)或概率网络(Probability Networ ...
2017-03-18从朴素贝叶斯分类器到贝叶斯网络 一、贝叶斯公式(一些必备的数学基础) 贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研 ...
2017-03-18机器学习中的隐马尔科夫模型(HMM)详解 在之前介绍贝叶斯网络的博文中,我们已经讨论过概率图模型(PGM)的概念了。Russell等在文献【1】中指出:“在统计学中,图模型这个术语指包含贝叶斯网络在内的比较宽泛 ...
2017-03-18机器学习中的Accuracy,Precision,Recall和F1-Score 在模式识别和信息检索领域,二分类的问题(binary classification)是常会遇到的一类问题。例如,银行的信用卡中心每天都会收到很多的信用卡申请,银行必 ...
2017-03-18机器学习中的kNN算法及Matlab实例 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空 ...
2017-03-18机器学习中的EM算法详解及R语言实例(2) 我们在上一篇文章中介绍了EM算法的基本原理,如果读者对此不甚了解,建议参阅 机器学习中的EM算法详解及R语言实例(1) 4. 高斯混合模型 高斯混合模型(GMM, ...
2017-03-18机器学习中的EM算法详解及R语言实例(1) 最大期望算法(EM) K均值算法非常简单,相信读者都可以轻松地理解它。但下面将要介绍的EM算法就要困难许多了,它与极大似然估计密切相关。 1 算法原理 不妨 ...
2017-03-18在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15