京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从朴素贝叶斯分类器到贝叶斯网络
一、贝叶斯公式(一些必备的数学基础)
贝叶斯(Thomas Bayes)是生活在十八世纪的一名英国牧师和数学家。因为历史久远,加之他没有太多的著述留存,今天的人们对贝叶斯的研究所知甚少。唯一知道的是,他提出了概率论中的贝叶斯公式。但从他曾经当选英国皇家科学学会会员(类似于院士)来看,他的研究工作在当时的英国学术界已然受到了普遍的认可。
事实上,在很长一段时间里,人们都没有注意到贝叶斯公式所潜藏的巨大价值。直到二十世纪人工智能、机器学习等崭新学术领域的出现,人们才从一堆早已蒙灰的数学公式中发现了贝叶斯公式的巨大威力。为了方便后续内容的介绍,这里我们先来简单复习一下概率论中的一些基本知识。
事件A在另外一个事件B已经发生条件下的发生概率,称为条件概率,记为P(A|B)。
两个事件共同发生的概率称为联合概率。A与B的联合概率表示为 P(AB) 或者P(A,B)。
进而有,P(AB) = P(B)P(A|B)=P(A)=P(B|A)。这也就导出了最简单形式的贝叶斯公式,即
P(A|B)=P(B|A)*P(A)/P(B)
以及条件概率的链式法则
P(A1,A2,...,An) = P(An|A1,A2,...,An-1)P(An-1|A1,A2,...,An-2)...P(A2|A1)P(A1)
概率论中还有一个全概率公式
由此可进一步导出完整的贝叶斯公式
二、朴素贝叶斯分类器(Naïve Baysian classifier)
分类是机器学习和数据挖掘中最基础的一种工作。假设现在我们一组训练元组(Training tuples),或称训练样例,以及与之相对应的分类标签(Class labels)。每个元组都被表示成n维属性向量X=(x1, x2, ..., xn)的形式,而且一共有K个类,标签分别为C1, C2, ..., Ck。分类的目的是当给定一个元组X时,模型可以预测其应当归属于哪个类别。
朴素贝叶斯分类器的原理非常简单,就是基于贝叶斯公式进行推理,所以才叫做“朴素”。对于每一个类别Ci, 利用贝叶斯公式来估计在给定训练元组X时的条件概率p(Ci|X),即
P(Ci|X) = P(X|Ci)P(Ci)/P(X)
当且仅当概率P(Ci|X)在所有的P(Ck|X)中取值最大时,就认为X属于Ci。更进一步,因为P(X)对于所有的类别来说都是恒定的,所以其实只需要P(Ci|X) = P(X|Ci)P(Ci)最大化即可。
应用朴素贝叶斯分类器时必须满足条件:所有的属性都是条件独立的。也就是说,在给定条件的情况下,属性之间是没有依赖关系的。即
为了演示贝叶斯分类器,来看下面这个例子。我们通过是否头疼、咽痛、咳嗽以及体温高低来预测一个人是普通感冒还是流感。
上面是我们提供的训练数据。现在有一个病人到诊所看病,他的症状是:severeheadache, no soreness, normaltemperature and with cough。请问他患的是普通感冒还是流感?分析易知,这里的分类标签有Flu 和Cold两种。于是最终要计算的是下面哪个概率更高。
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Flu)*P(Headache= severe|Flu)*P(Sore= no|Flu)*P(Temperature= normal |Flu)*P(Cough = yes|Flu)
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
≅P(Cold)*P(Headache= severe|Cold)*P(Sore= no|Cold)*P(Temperature= normal |Cold)*P(Cough = yes |Cold)
为了计算上面这个结果,我们需要通过已知数据(训练数据)让机器自己“学习”(建立)一个“模型”。由已知模型很容以得出下表中的结
以及
e= small value = 10^-7(one can use e to be less than 1/n where n is the number of training instances)
P( Flu| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
= P(Flu)*P(Headache = severe|Flu)*P(Sore= no|Flu)*P(Temperature = normal |Flu)*P(Cough = yes|Flu)
= 3/5 × 2/3 × e × 2/3 × 3/3 = 0.26e
P( Cold| Headache = severe, Sore = no,Temperature = normal, Cough = yes)
~ P(Cold)*P(Headache =severe|Cold)*P(Sore = no|Cold)*P(Temperature = normal |Cold)*P(Cough = yes|Cold)
= 2/5 × e × ½ × 1 × ½ = 0.1e
显然P(Flu) > P(Cold),所以我们的诊断(预测,分类)结果是 Flu。
最后讨论一下朴素贝叶斯分类器的特点(来自网上资料总结,我就不翻译了):
我们将把贝叶斯网络留待下一篇文章中介绍(未完,待续...)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09