京公网安备 11010802034615号
经营许可证编号:京B2-20210330
机器学习中的kNN算法及Matlab实例
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
尽管kNN算法的思想比较简单,但它仍然是一种非常重要的机器学习(或数据挖掘)算法。在2006年12月召开的 IEEE
International Conference on Data Mining (ICDM),与会的各位专家选出了当时的十大数据挖掘算法( top 10 data mining algorithms ),可以参加文献【1】, K最近邻算法即位列其中。
二、在Matlab中利用kNN进行最近邻查询
如果手头有一些数据点(以及它们的特征向量)构成的数据集,对于一个查询点,我们该如何高效地从数据集中找到它的最近邻呢?最通常的方法是基于k-d-tree进行最近邻搜索。
KNN算法不仅可以用于分类,还可以用于回归,但主要应用于回归,所以下面我们就演示在MATLAB中利用KNN算法进行数据挖掘的基本方法。
首先在Matlab中载入数据,代码如下,其中meas( : , 3:4)相当于取出(之前文章中的)Petal.Length和Petal.Width这两列数据,一共150行,三类鸢尾花每类各50行。
[plain] view plain copy
load fisheriris
x = meas(:,3:4);
然后我们可以借助下面的代码来用图形化的方式展示一下数据的分布情况:
[plain] view plain copy
gscatter(x(:,1),x(:,2),species)
legend('Location','best')
执行上述代码,结果如下图所示:

然后我们在引入一个新的查询点,并在图上把该点用×标识出来:
[plain] view plain copy
newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...
'markersize',10,'linewidth',2)
结果如下图所示:

接下来建立一个基于KD-Tree的最近邻搜索模型,查询目标点附近的10个最近邻居,并在图中用圆圈标识出来。
[plain] view plain copy
>> Mdl = KDTreeSearcher(x)
Mdl =
KDTreeSearcher with properties:
BucketSize: 50
Distance: 'euclidean'
DistParameter: []
X: [150x2 double]
>> [n,d] = knnsearch(Mdl,newpoint,'k',10);
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
下图显示确实找出了查询点周围的若干最近邻居,但是好像只要8个,

不用着急,其实系统确实找到了10个最近邻居,但是其中有两对数据点完全重合,所以在图上你只能看到8个,不妨把所有数据都输出来看看,如下所示,可知确实是10个。
[plain] view plain copy
>> x(n,:)
ans =
5.0000 1.5000
4.9000 1.5000
4.9000 1.5000
5.1000 1.5000
5.1000 1.6000
4.8000 1.4000
5.0000 1.7000
4.7000 1.4000
4.7000 1.4000
4.7000 1.5000
KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。例如下面的代码告诉我们,待查询点的邻接中有80%是versicolor类型的鸢尾花,所以如果采用KNN来进行分类,那么待查询点的预测分类结果就应该是versicolor类型。
[plain] view plain copy
>> tabulate(species(n))
Value Count Percent
virginica 2 20.00%
versicolor 8 80.00%
在利用 KNN方法进行类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
我们还要说明在Matlab中使用KDTreeSearcher进行最近邻搜索时,距离度量的类型可以是欧拉距离('euclidean')、曼哈顿距离('cityblock')、闵可夫斯基距离('minkowski')、切比雪夫距离('chebychev'),缺省情况下系统使用欧拉距离。你甚至还可以自定义距离函数,然后使用knnsearch()函数来进行最近邻搜索,具体可以查看MATLAB的帮助文档,我们不具体展开。
三、利用kNN进行数据挖掘的实例
下面我们来演示在MATLAB构建kNN分类器,并以此为基础进行数据挖掘的具体步骤。首先还是载入鸢尾花数据,不同的是这次我们使用全部四个特征来训练模型。
[plain] view plain copy
load fisheriris
X = meas; % Use all data for fitting
Y = species; % Response data
然后使用fitcknn()函数来训练分类器模型。
[plain] view plain copy
>> Mdl = fitcknn(X,Y)
Mdl =
ClassificationKNN
ResponseName: 'Y'
CategoricalPredictors: []
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NumObservations: 150
Distance: 'euclidean'
NumNeighbors: 1
你可以看到默认情况下,最近邻的数量为1,下面我们把它调整为4。
[plain] view plain copy
Mdl.NumNeighbors = 4;
或者你可以使用下面的代码来完成上面同样的任务:
[plain] view plain copy
Mdl = fitcknn(X,Y,'NumNeighbors',4);
既然有了模型,我们能否利用它来执行以下预测分类呢,具体来说此时我们需要使用predict()函数,例如
[plain] view plain copy
>> flwr = [5.0 3.0 5.0 1.45];
>> flwrClass = predict(Mdl,flwr)
flwrClass =
'versicolor'
最后,我们还可以来评估一下建立的kNN分类模型的情况。例如你可以从已经建好的模型中建立一个cross-validated 分类器:
[plain] view plain copy
CVMdl = crossval(Mdl);
然后再来看看cross-validation loss,它给出了在对那些没有用来训练的数据进行预测时每一个交叉检验模型的平均损失
[plain] view plain copy
>> kloss = kfoldLoss(CVMdl)
kloss =
0.0333
再来检验一下resubstitution loss, which,默认情况下,它给出的是模型Mdl预测结果中被错误分类的数据占比。
[plain] view plain copy
>> rloss = resubLoss(Mdl)
rloss =
0.0400
如你所见,cross-validated 分类准确度与 resubstitution 准确度大致相近。所以你可以认为你的模型在面对新数据时(假设新数据同训练数据具有相同分布的话),分类错误的可能性大约是 4% 。
四、关于k值的选择
kNN算法在分类时的主要不足在于,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。因此可以采用权值的方法(和该样本距离小的邻居权值大)来改进。
从另外一个角度来说,算法中k值的选择对模型本身及其对数据分类的判定结果都会产生重要影响。如果选择较小的k值,就相当于用较小的领域中的训练实例来进行预测,学习的近似误差会减小,只有与输入实例较为接近(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差会增大。预测结果会对近邻的实例点非常敏感。如果临近的实例点恰巧是噪声,预测就会出现错误。换言之,k值的减小意味着整体模型变得复杂,容易发成过拟合。数据分析师培训
如果选择较大的k值,就相当于用较大的邻域中的训练实例进行预测,其优点是可以减少学习的估计误差,但缺点是学习的近似误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。k值的增大就意味着整体的模型变得简单。
在应用中,k值一般推荐取一个相对比较小的数值。并可以通过交叉验证法来帮助选取最优k值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20