
先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系
第一张图片拟合的函数和训练集误差较大,我们称这种情况为 欠拟合
第二张图片拟合的函数和训练集误差较小,我们称这种情况为 合适拟合
第三张图片拟合的函数完美的匹配训练集数据,我们称这种情况为 过拟合
类似的,对于逻辑回归同样也存在欠拟合和过拟合问题,如下三张图
欠拟合问题,根本的原因是特征维度过少,导致拟合的函数无法满足训练集,误差较大。
过拟合问题,根本的原因则是特征维度过多,导致拟合的函数完美的经过训练集,但是对新数据的预测结果则较差。
解决过拟合问题,则有2个途径
正则化; 保留所有的特征,通过降低参数θ的值,来影响模型
3. 正则化
回到前面过拟合例子, h(x) = θ0 + θ1x1 + θ2x2 + θ3x3 + θ4x4
从图中可以看出,解决这个过拟合问题可以通过消除特征x3和x4的影响, 我们称为对参数的惩罚, 也就是使得参数θ3, θ4接近于0。
最简单的方法是对代价函数进行改造,例如
这样在求解最小化代价函数的时候使得参数θ3, θ4接近于0。
正则化其实就是通过对参数θ的惩罚来影响整个模型
4. 线性回归使用正则化
前面几篇文章中,线性回归的代价函数J(θ)表达式如下
正则化后,代价函数J(θ)表达式如下,注意j从1开始
注意λ值不能设置过大,否则会导致求出的参数除了θ0,其它θ1,θ2 ... θn值约等于0,导致预测函数h(x)出现极大偏差
我们的目标依然是求J(θ)最小值,我们还是用梯度下降算法和正规方程求解最小化J(θ)
1. 梯度下降算法(注意需要区分θ0和其它参数的更新等式)
2. 正规方程
对于正规方程来,需要修改等式如下
系数λ 所乘的矩阵为 (n+1)*(n+1)维
5. 逻辑回归使用正则化
和线性回归模型类型,逻辑回归也可以通过正则化来解决过拟合问题。
正则化逻辑回归的代价函数,是在等式后加上一项,注意j从1开始
同样的用梯度下降算法求解最小化J(θ),也需要做改变
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12