京公网安备 11010802034615号
经营许可证编号:京B2-20210330
回归问题提出
首先需要明确回归问题的根本目的在于预测。对于某个问题,一般我们不可能测量出每一种情况(工作量太大),故多是测量一组数据,基于此数据去预测其他未测量数据。
比如课程给出的房屋面积、房间数与价格的对应关系,如下表:
若要测量出所有情况,不知得测到猴年马月了。有了上面这一组测量数据,我们要估计出一套房子(如2800平方英尺5个房间)的价格,此时回归算法就可以荣耀登场了。
回归算法推导
有了上面这个问题,如何来估计房子的价格呢?首先需要建立模型,一种最简单的模型就是线性模型了,写成函数就是:
其中x1x1是房子面积,x2x2是房间数,hh是对应的房子面积,θjθj就是我们需要求的系数。
对于每个具体问题,需要根据测量数据的情况来确定是否为线性。这里假设为线性模型会限制适用范围,如果房屋面积与价格不是线性关系,则此模型估计的房子价格可能会偏差很大。因此实际上这里也可以假设为其他关系(如指数、对数等),那么估计结果可能就极度不准确了,当然那也就不是线性回归,这里就不必讨论。具体为什么选择线性模型,将在后面广义回归模型中来解答。
上面公式写成向量形式,则为
其中
那么上面的测量数据可以表示为
,其中的y为测量的房屋面积。这样如何根据这m个测量数据来求解参数θθ就是我们需要解决的问题了。
我们可以通过保证此组测量的预测误差最小来约束求解。代价函数为
该代价函数表达的是测量数据的均方误差和。通过最小化该代价函数,即可估计出参数θθ。前面那个1/2并没有实质意义,主要为了后面求导方便加的;实际上为1/m更具有绝对意义。
回归算法求解
如何求解上述问题?主要有梯度下降法,牛顿迭代法,最小二乘法。这里主要讲梯度下降法,因为该方法在后面使用较多,如神经网络、增强学习等求解都是使用梯度下降。
函数在沿着其梯度方向增加最快的,那么要找到该函数的最小值,可以沿着梯度的反方向来迭代寻找。也就是说,给定一个初始位置后,寻找当前位置函数减小最快的方向,加上一定步长即可到达下一位置,然后再寻找下一位置最快的方向来到达再下一个位置……,直至其收敛。上述过程用公式表达出来即如下所示:
根据上述表达式,可以求得代价函数的偏导数为:
这样,迭代规则为
这个公式即是所谓的批量梯度下降。仔细观察该公式,每次迭代都需要把m个样本全部计算一遍,如果m很大时,其迭代将非常慢,因此一种每次迭代只计算1个样本的随机梯度下降(或增量梯度下降)可以极大减少运算量,其迭代如下:
若所有样本迭代完成后还未收敛,则继续从第1个样本开始迭代。
算法实现与结果
首先使用下面代码生成一组数据,为了后续显示方便,数据为一条直线上叠加一定噪声:
View Code
数据显示出来如下图:
线性回归函数使用梯度下降求解:
View Code
测试函数:
View Code
实际上上述代码中真正涉及算法求解的不多,其他都是保存中间结果和绘图等用于调试分析的。回归结果如图,蓝色点为上面保存的数据,红色直线是回归拟合的直线:
其中每次迭代后,代价函数J的变化则如下图(考虑其范围过大,绘制的是其对数图):
可以看出,当迭代超过1000次时,代价函数已经基本不变了。梯度下降迭代过程如下左图,xy坐标分别为θ0和θ1θ0和θ1,z轴为对应θθ的代价函数值,图中心的红色小块是真实的最优值,绿色方块是每次迭代的位置,可以看到迭代过程是不断靠近最优解。由于图中绿色方块重叠过多导致绘图出来中间部分显示为黑色了,右图为局部放大的结果。
算法分析
1. 梯度下降法中,BatchSize为一次迭代使用的样本数量,当其为m时,即为批量梯度下降,为1时即是随机梯度下降。实验效果显示,BatchSize越大,迭代越耗时,但其收敛越稳定;反之,则迭代越快,而易产生振荡现象;具体可修改测试代码中的BatchSize来看实验结果。
2. 关于步长的选择。在梯度下降法中,步长的影响是非常大的,步长过小会导致收敛非常慢,过大则容易导致不收敛。上述程序中的步长是经过若干次运行修改的,换一组其他数据可能不收敛,这是该程序存在的问题,待回归算法完结后将专门来一篇分析该问题,并给出解决方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27