cda

数字化人才认证

首页 > 行业图谱 >

12345 1/5

 欠拟合 产生的原因有哪些?应该如何解决?

欠拟合产生的原因有哪些?应该如何解决?
2020-07-23
对于机器学习或者是深度学习模型来说,我们既希望这个模型能在训练数据中表现良好(训练误差),又希望这个模型在测试集中也能有良好的表现(泛化误差)。而过拟合和欠拟合就是用来描述泛化误差的。欠拟合问题与过拟合 ...

学习曲线--帮你清晰判断过拟合和 欠拟合

学习曲线--帮你清晰判断过拟合和欠拟合
2020-07-09
前面小编给大家简单介绍过拟合和欠拟合时,提到了一个概念:学习曲线,我们通过学习曲线能够很清晰的判别出模型现在说出的状态是欠拟合还是过拟合,下面小编具体整理了学习曲线的相关内容,希望对大家有所帮助。 ...

如何理解 欠拟合 ?常用的处理方法有哪些?

如何理解欠拟合?常用的处理方法有哪些?
2020-07-08
一、欠拟合概念及理解 机器学习中欠拟合是一个常见的问题,简单来说就是模型在训练和预测时表现都欠佳的情况。一个欠拟合的机器学习模型不是一个良好的模型并且在训练数据上表现不好这是显而易见的。 图 ...

机器学习-回归模型- 欠拟合 和过拟合

机器学习-回归模型-欠拟合和过拟合
2017-03-20
机器学习-回归模型-欠拟合和过拟合 1. 什么是欠拟合和过拟合 先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系 第一张图片拟合的函数和训练集误差较大,我们称这种情况为 欠拟合 ...
在SPSS中做二元logistic回归,数据的训练集和预测集怎么分的?
2023-05-12
在进行机器学习建模时,我们通常需要将数据集分成训练集和测试集。这种做法能够帮助我们评估模型的性能,并检验模型是否过拟合或欠拟合。在SPSS中做二元logistic回归也不例外。 二元logistic回归是一种用来建立分类 ...
如何对机器学习xgboost中数据集不平衡进行处理?
2023-04-18
机器学习是一种利用算法和模型从数据中自动学习的方法,而不需要明确编程。随着技术的发展,机器学习在解决各种问题方面得到了广泛的应用。但是,在实际应用中,我们会遇到一个常见的问题:不平衡的数据集。 由于某 ...
BP神经网络里的训练次数,训练目标,学习速率怎么确定?
2023-04-13
BP神经网络是一种常见的人工神经网络模型,用于解决分类、回归和聚类等问题。在BP神经网络中,训练次数、训练目标和学习速率是三个重要的超参数,对模型的性能和训练效率有着至关重要的影响。本文将从理论和实践两方 ...
深度神经网络是如何训练的?
2023-04-11
深度神经网络是一种强大的机器学习模型,可以用于各种任务,例如图像分类、语音识别和自然语言处理。但是,训练深度神经网络可以是一个复杂的过程,需要考虑许多因素,例如网络结构、损失函数和优化算法。 网络结构 ...
训练神经网络时,loss值在什么数量级上合适?
2023-04-10
在训练神经网络时,loss值是一个非常重要的指标,它通常用来衡量模型的拟合程度和优化算法的效果。然而,对于不同的问题和数据集,适当的loss值范围是不同的。本文将探讨在训练神经网络时,loss值在什么数量级上是合 ...
怎么用神经网络建立预测模型?
2023-04-10
神经网络是一种能够建立预测模型的强大工具,它可以通过对数据的学习和分析来预测未来事件的发生情况。在本文中,我们将探讨如何使用神经网络来建立预测模型,从而提高我们制定决策的准确性和效率。 收集数据 首先 ...
如何对XGBoost模型进行参数调优?
2023-04-10
XGBoost是一个高效、灵活和可扩展的机器学习算法,因其在许多数据科学竞赛中的成功表现而备受瞩目。然而,为了使XGBoost模型达到最佳性能,需要进行参数调优。本文将介绍一些常见的XGBoost参数以及如何对它们进行调 ...
神经网络进行数据预测的原理是什么?
2023-04-10
神经网络是一种基于人工神经元网络的计算模型,被广泛应用于数据预测和其他机器学习任务中。在数据预测方面,神经网络的原理是利用已知数据集来训练模型,然后使用该模型来进行未知数据的预测。 神经网络的基本结构 ...
神经网络的收敛速度和梯度大小有关吗?
2023-04-10
神经网络的收敛速度和梯度大小有密切关系。在神经网络训练过程中,我们通常会使用反向传播算法来计算每个权重的梯度,然后根据这些梯度来更新权重。因此,梯度大小对于神经网络的学习效率和收敛速度是至关重要的。 ...
请问如何解决神经网络训练集和验证集的loss、acc差别过大的问题?
2023-04-07
在神经网络的训练过程中,我们通常会把数据集划分为训练集和验证集。训练集用于训练模型,而验证集则用于评估模型的性能。在实际操作中,有时候我们会遇到训练集和验证集的损失(loss)、准确率(acc)差别过大的情况。 ...
神经网络的训练中要计算验证集的损失函数吗?
2023-04-07
在神经网络训练过程中,验证集是用于评估模型性能的重要数据集之一。通常情况下,我们会使用验证集来监控模型的训练和调优,并计算验证集的损失函数来评估模型的泛化能力。 在深度学习中,神经网络模型的训练一般通 ...
如果有无限数量的数据训练神经网络,结果会如何?
2023-04-07
如果给神经网络提供无限数量的数据进行训练,那么神经网络将能够更好地理解真实世界的复杂性。这样的训练可以帮助神经网络克服过拟合和欠拟合等常见问题,同时也可以提高模型的准确性和鲁棒性。 然而,实际上不存在 ...
用了更多特征,为什么xgboost效果反而变差了?
2023-04-03
XGBoost是一种流行的算法,常用于解决回归问题和分类问题。它通过集成多个决策树来提高模型的精度和泛化能力。尽管有时候添加更多的特征可能会改善模型的性能,但有时候它可能会导致模型的性能反而变差。在本文中, ...
如何确定神经网络的最佳层数与神经元个数?
2023-03-31
神经网络的层数和神经元个数是决定其性能和复杂度的重要参数。然而,确定最佳的层数和神经元个数并非易事。在本文中,我们将介绍一些常用的方法来确定神经网络的最佳层数和神经元个数。 神经网络层数的确定 1. 增加 ...
对于一个准确率不高的神经网络模型,应该从哪些方面去优化?
2023-03-31
神经网络模型是一种机器学习算法,用于解决许多现实世界的问题。然而,即使使用最先进的技术和算法构建的神经网络模型也可能存在准确率不高的问题。在这种情况下,我们需要考虑从哪些方面去优化。在本文中,我将分享 ...
神经网络损失函数由多部分组成怎么设置权重?
2023-03-31
神经网络的损失函数通常由多个部分组成,每个部分对应着不同的训练目标。例如,在图像分类中,我们可能希望最小化分类错误率和正则化项,因为过拟合会导致模型在测试集上表现不佳。在语音识别中,我们还可以添加协同 ...
12345 1/5

OK