
前面小编给大家简单介绍过拟合和欠拟合时,提到了一个概念:学习曲线,我们通过学习曲线能够很清晰的判别出模型现在说出的状态是欠拟合还是过拟合,下面小编具体整理了学习曲线的相关内容,希望对大家有所帮助。
学习曲线(learning curve)是不同训练集大小,模型在训练集和验证集上的得分变化曲线。横坐标为·样本数,纵坐标为训练和交叉验证集上的得分(如准确率)。
模型在新数据上的表现如何,都能清晰地在展现在学习去线上,我们也能通过这些表现,进而判断模型是否方差偏高或者偏差过高,以及增大训练集是否可以减小过拟合。
如图所示:
(1)当训练集和测试集的误差收敛但却很高时,为高偏差。
左上图中训练集和验证集上的曲线能够收敛,但偏差很高,训练集和验证集上准确率相差很大,却都很差。这种情况下模型对已知数据和未知数据都不能进行准确的预测,很可能是欠拟合。
方法:
增加模型参数,采用更复杂的模型,减小正则项。
注意:此时通过增加数据量是不起作用的。
(2)当训练集和测试集上误差之间有大的差距时,为高方差。
当训练集的准确率比其他独立数据集上的测试结果的准确率要高时,一般都是过拟合。
右上图中,训练集和验证集的准确率差距很大,这种情况下,模型能够很好的拟合已知数据,但是泛化能力不足,属于高方差,很可能是过拟合。
方法:
增大训练集,降低模型复杂度,增大正则项,或者通过特征选择减少特征数。
(3)右下方图,也是最理想情况:找到偏差和方差都很小的状态,就是收敛而且误差较小。
学习曲线的具体操作:
len(X_train) 个训练样本,训练出 len(X_train) 个模型,第一次使用一个样本训练出第一个模型,第二次使用两个样本训练出第二个模型,… ,第 len(X_train) 次使用 len(X_train) 个样本训练出最后一个模型;
每个模型对于训练这个模型所使用的部分训练数据集的预测值:y_train_predict = 模型.predict(X_train[ : i ]);
每个模型对于训练这个模型所使用的部分训练数据集的均方误差:mean_squared_error(y_train[ : i ], y_train_predict);
每个模型对于整个测试数据集的预测值:y_test_predict = 模型.predict(X_test)
每个模型对于整个测试数据集的预测的均方误差:mean_squared_error(y_test, y_test_predict);
绘制每次训练模型所用的样本数量与该模型对应的部分训练数据集的均方误差的平方根的关系曲线:plt.plot([i for i in range(1. len(X_train)+1)],np.sqrt(train_score), label=“train”)
绘制每次训练模型所用的样本数量与该模型对应的测试数据集的预测的均方误差的关系曲线:plt.plot([i for i in range(1. len(X_train)+1)],np.sqrt(test_score), label=“test”)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11