
机器学习中的Accuracy,Precision,Recall和F1-Score
在模式识别和信息检索领域,二分类的问题(binary classification)是常会遇到的一类问题。例如,银行的信用卡中心每天都会收到很多的信用卡申请,银行必须根据客户的一些资料来预测这个客户是否有较高的违约风险,并据此判断是否要核发信用卡给该名客户。显然“是否会违约”就是一个二分类的问题。
如果你已经根据训练数据建立了一个模型,接下来你会用一些测试数据来评估你模型的效果,即 Evaluate model on held-out(留存) test data。通常你可能会考虑的评估指标主要有
Accuracy
Precision
Recall
F1 Score
但是这些指标常常令人混淆不清,下面我们逐个介绍并加以辨析。作为一个例子,来看表中这组分类结果
1、Accuracy
2、Precision
尽管 Accuracy 和 Precision 都可以翻译成“准确率”,但是二者含义并不相同。Precision 又称为 Positive predictive value,对于一个机器学习模型而言,假设有下图所示的预测结果:
那么,Precision = TP/(TP+FP),如果我们将B视作Positive class,那么Precision就是
“被预测成B且正确的/(被预测成B且正确的+被预测成B但错误的),即有
如果现在讨论的是一个信息检索问题,那么Precision,通常可译为“查准率”,(假设我们的目标是检索B)就是指:检索到的正确的信息(或文档)数(正确就是指与B相关)/ {检索到的正确的信息数(IR认为与B相关且确实相关) + 检索到的错误的信息数(IR认为与B相关但并不相关)}
3、Recall
Recall (常常译为”召回率“)是与 Precision 相对应的另外一个广泛用于信息检索和统计学分类领域的度量值,用来评价结果的质量。
Recall = TP/(TP + FN),同样如果我们将B视作Positive class,那么 Recall 就是
“被预测成B且正确的/(被预测成B且正确的+被预测成A但错误的(其实本来是B的)),即有
如果现在讨论的是一个信息检索问题,那么Recall通常可译为“查全率”,(假设我们的目标是检索B)就是指:检索到的正确的信息(或文档)数(正确就是指与B相关)/ {检索到的正确的信息数(IR认为与B相关且确实相关) + 没有检索到的但却相关的信息数(本来与B相关但IR认为并不相关所以未检索到的)},即检索出的相关文档数和文档库中所有的相关文档数的比率。
显然, Precision 和 Recall 两者取值在0和1之间,数值越接近1,查准率或查全率就越高。
4、F1 Score
F1 score (或称 F-score 或 F-measure) ,是一个兼顾考虑了Precision 和 Recall 的评估指标。通常, F-measure 就是指 Precision 和 Recall 的调和平均数(Harmonic mean),即数据分析师培训
更广泛的,对于一个实数β,还可以定义
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28