
一、线性支持向量机的概念
线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机,通过求解对应的凸二次规划问题,也同样求得分离超平面
以及相应的分类决策函数
二、与线性可分支持向量机的比较
线性支持向量机与线性可分支持向量机最大的不同就是在处理的问题上,线性可分支持向量机处理的是严格线性可分的数据集,而线性支持向量机处理的是线性不可分的数据集,然而,在基本的原理上他们却有着想通之处。这里的线性不可分是指数据集中存在某些点不能满足线性可分支持向量机的约束条件:。
具体来讲,对于特征空间上的训练数据集,且不是线性可分的,即存在某些特异点不满足的约束条件,若将这些特异点去除,那么剩下的数据点是线性可分的,由此可见,线性可分支持向量机是线性支持向量机的特殊情况。为了解决这样的问题,对每个样本点
引入一个松弛变量
,且,则上述的约束条件被放宽,即:
此时目标函数变为:
其中称为惩罚参数,且。在线性支持向量机中加入了惩罚项,与线性可分支持向量的应间隔最大化相对应,在线性支持向量机中称为软间隔最大化。数据分析师培训
三、线性支持向量机的原理
由上所述,我们得到线性支持向量机的原始问题:
接下来的问题就变成如何求解这样一个最优化问题(称为原始问题)。引入拉格朗日函数:
其中,。
此时,原始问题即变成
利用拉格朗日函数的对偶性,将问题变成一个极大极小优化问题:
首先求解,将拉格朗日函数分别对求偏导,并令其为0:
即为:
将其带入拉格朗日函数,即得:
第二步,求,即求:
由可得
,因为在第二步求极大值的过程中,函数只与a有关。
将上述的极大值为题转化为极小值问题:
这就是原始问题的对偶问题。
四、线性支持向量机的过程
1、设置惩罚参数,并求解对偶问题:
假设求得的最优解为;
2、计算原始问题的最优解:
选择中满足
的分量,计算:
3、求分离超平面和分类决策函数:
分离超平面为:
分类决策函数为:
五、实验的仿真
1、解决线性可分问题
与博文“简单易学的机器学习算法——线性可分支持向量机”实验一样,其中取中的最大值。
MATLAB代码为
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
y = [1,1,-1];%标签
A = [X,y'];
m = size(A);%得到训练数据的大小
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
axis([0,7,0,7])
hold off
实验结果为:
(线性可分问题的分离超平面)
2、解决线性不可分问题
问题为:
(线性不可分问题)
MATLAB代码:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSet.txt');
% 处理数据的标签
m = size(A);%得到训练数据的大小
for i = 1:m(1,1)
A(i,m(1,2)) = A(i,m(1,2))*2-1;
end
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
% C = mean(x);
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [-4,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
hold off
实验结果为:
(线性不可分问题的分离超平面)
注:这里的的取值很重要,的取值将决定分类结果的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26