
一、线性支持向量机的概念
线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机,通过求解对应的凸二次规划问题,也同样求得分离超平面
以及相应的分类决策函数
二、与线性可分支持向量机的比较
线性支持向量机与线性可分支持向量机最大的不同就是在处理的问题上,线性可分支持向量机处理的是严格线性可分的数据集,而线性支持向量机处理的是线性不可分的数据集,然而,在基本的原理上他们却有着想通之处。这里的线性不可分是指数据集中存在某些点不能满足线性可分支持向量机的约束条件:。
具体来讲,对于特征空间上的训练数据集,且不是线性可分的,即存在某些特异点不满足的约束条件,若将这些特异点去除,那么剩下的数据点是线性可分的,由此可见,线性可分支持向量机是线性支持向量机的特殊情况。为了解决这样的问题,对每个样本点
引入一个松弛变量
,且,则上述的约束条件被放宽,即:
此时目标函数变为:
其中称为惩罚参数,且。在线性支持向量机中加入了惩罚项,与线性可分支持向量的应间隔最大化相对应,在线性支持向量机中称为软间隔最大化。数据分析师培训
三、线性支持向量机的原理
由上所述,我们得到线性支持向量机的原始问题:
接下来的问题就变成如何求解这样一个最优化问题(称为原始问题)。引入拉格朗日函数:
其中,。
此时,原始问题即变成
利用拉格朗日函数的对偶性,将问题变成一个极大极小优化问题:
首先求解,将拉格朗日函数分别对求偏导,并令其为0:
即为:
将其带入拉格朗日函数,即得:
第二步,求,即求:
由可得
,因为在第二步求极大值的过程中,函数只与a有关。
将上述的极大值为题转化为极小值问题:
这就是原始问题的对偶问题。
四、线性支持向量机的过程
1、设置惩罚参数,并求解对偶问题:
假设求得的最优解为;
2、计算原始问题的最优解:
选择中满足
的分量,计算:
3、求分离超平面和分类决策函数:
分离超平面为:
分类决策函数为:
五、实验的仿真
1、解决线性可分问题
与博文“简单易学的机器学习算法——线性可分支持向量机”实验一样,其中取中的最大值。
MATLAB代码为
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
y = [1,1,-1];%标签
A = [X,y'];
m = size(A);%得到训练数据的大小
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
axis([0,7,0,7])
hold off
实验结果为:
(线性可分问题的分离超平面)
2、解决线性不可分问题
问题为:
(线性不可分问题)
MATLAB代码:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSet.txt');
% 处理数据的标签
m = size(A);%得到训练数据的大小
for i = 1:m(1,1)
A(i,m(1,2)) = A(i,m(1,2))*2-1;
end
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
% C = mean(x);
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [-4,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
hold off
实验结果为:
(线性不可分问题的分离超平面)
注:这里的的取值很重要,的取值将决定分类结果的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14