一、线性支持向量机的概念
线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机,通过求解对应的凸二次规划问题,也同样求得分离超平面
以及相应的分类决策函数
二、与线性可分支持向量机的比较
线性支持向量机与线性可分支持向量机最大的不同就是在处理的问题上,线性可分支持向量机处理的是严格线性可分的数据集,而线性支持向量机处理的是线性不可分的数据集,然而,在基本的原理上他们却有着想通之处。这里的线性不可分是指数据集中存在某些点不能满足线性可分支持向量机的约束条件:。
具体来讲,对于特征空间上的训练数据集,且不是线性可分的,即存在某些特异点不满足的约束条件,若将这些特异点去除,那么剩下的数据点是线性可分的,由此可见,线性可分支持向量机是线性支持向量机的特殊情况。为了解决这样的问题,对每个样本点
引入一个松弛变量
,且,则上述的约束条件被放宽,即:
此时目标函数变为:
其中称为惩罚参数,且。在线性支持向量机中加入了惩罚项,与线性可分支持向量的应间隔最大化相对应,在线性支持向量机中称为软间隔最大化。数据分析师培训
三、线性支持向量机的原理
由上所述,我们得到线性支持向量机的原始问题:
接下来的问题就变成如何求解这样一个最优化问题(称为原始问题)。引入拉格朗日函数:
其中,。
此时,原始问题即变成
利用拉格朗日函数的对偶性,将问题变成一个极大极小优化问题:
首先求解,将拉格朗日函数分别对求偏导,并令其为0:
即为:
将其带入拉格朗日函数,即得:
第二步,求,即求:
由可得
,因为在第二步求极大值的过程中,函数只与a有关。
将上述的极大值为题转化为极小值问题:
这就是原始问题的对偶问题。
四、线性支持向量机的过程
1、设置惩罚参数,并求解对偶问题:
假设求得的最优解为;
2、计算原始问题的最优解:
选择中满足
的分量,计算:
3、求分离超平面和分类决策函数:
分离超平面为:
分类决策函数为:
五、实验的仿真
1、解决线性可分问题
与博文“简单易学的机器学习算法——线性可分支持向量机”实验一样,其中取中的最大值。
MATLAB代码为
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
%简单的测试数据集
X = [3,3;4,3;1,1];
y = [1,1,-1];%标签
A = [X,y'];
m = size(A);%得到训练数据的大小
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [0,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
axis([0,7,0,7])
hold off
实验结果为:
(线性可分问题的分离超平面)
2、解决线性不可分问题
问题为:
(线性不可分问题)
MATLAB代码:
[plain] view plain copy 在CODE上查看代码片派生到我的代码片
%% 线性支持向量机
% 清空内存
clear all;
clc;
% 导入测试数据
A = load('testSet.txt');
% 处理数据的标签
m = size(A);%得到训练数据的大小
for i = 1:m(1,1)
A(i,m(1,2)) = A(i,m(1,2))*2-1;
end
% 区分开特征与标签
X = A(:,1:2);
Y = A(:,m(1,2))';
for i = 1:m(1,1)
X(i,:) = X(i,:)*Y(1,i);
end
%% 对偶问题,用二次规划来求解
H = X*X';
f = ones(m(1,1),1)*(-1);
B = Y;
b = 0;
lb = zeros(m(1,1),1);
% 调用二次规划的函数
[x,fval,exitflag,output,lambda] = quadprog(H,f,[],[],B,b,lb);
% 定义C
% C = mean(x);
C = max(x);
% 求原问题的解
n = size(x);
w = x' * X;
k = 1;
for i = 1:n(1,1)
if x(i,1) > 0 && x(i,1)<C
b(k,1) = Y(1,i)-w*X(i,:)'*Y(1,i);
k = k +1;
end
end
b = mean(b);
% 求出分离超平面
y_1 = [-4,4];
for i = 1:2
y_2(1,i) = (-b-w(1,1)*y_1(1,i))./w(1,2);
end
hold on
plot(y_1,y_2);
for i = 1:m(1,1)
if A(i,m(1,2)) == -1
plot(A(i,1),A(i,2),'og');
elseif A(i,m(1,2)) == 1
plot(A(i,1),A(i,2),'+r')
end
end
hold off
实验结果为:
(线性不可分问题的分离超平面)
注:这里的的取值很重要,的取值将决定分类结果的准确性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-02