京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在MATLAB中进行基于SVM的数据分析
MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支持向量机(SVM)等等。下面我们就以SVM为例来看看利用MATLAB进行数据挖掘是一种怎样的体验。
MATLAB中用来进行基于SVM的数据挖掘的核心函数是 svmclassify() 和 svmtrain()。从函数名就能很容易地看出来,后者是用来进行模型训练的,而前者则是用后者训练出来的模型来对数据进行分类。首先我们来看看线性可分的情况,后续我们还会讨论更复杂的线性不可分的例子。
这里所使用的数据是费希尔的鸢尾花数据,我们首先导入数据(数据一共有150行,取前2/3作为训练数据,对应的类别是setosa和versicolor)
[plain] view plain copy
>> load fisheriris
>> xdata = meas(1:100,3:4);
>> group = species(1:100);
函数 svmtrain()的调用格式如下:
SVMStruct = svmtrain(Training,Group,Name,Value)
其中Training是feature向量,Group表示分属之类别。Name和Value是可选参数(也就是可以不写),而且必须成对使用,其中Name表示参数名,而Value则对应相应的参数取值。由于Name-Value的可取参数对非常之多,我们这里不一一列举(有需要的读者可以参阅MATLAB的帮助文档以了解更多),仅仅给出两个例子:比如,如果把Name置为'showplot',就可以通过紧跟其后的Value取值来控制是否将训练模型绘制成图,默认是'False',表示不会图。另外一个有用的参数是'kernel_function',如果你对SVM算法比较了解的话应该知道,核函数主要是通过空间转换来将原本线性不可分的数据,转换到另外一个线性可分的空间上,后续我们还会给出具体例子。
下面的代码就可以训练得到一个分类模型:
[plain] view plain copy
>> svmStruct = svmtrain(xdata,group,'ShowPlot',true);
上述代码的执行结果如下图所示(注意因为我们为参数'showplot'赋值为True,所以系统会绘制出图):

下面我们用svmclassify() 来测试一下模型的分类能力:
[plain] view plain copy
<span style="font-size:18px;">>> testdata = [4 1.5;1.8 0.38];
>> species = svmclassify(svmStruct,testdata,'ShowPlot',true)
species =
'versicolor'
'setosa'</span>
如果觉得文字表述的结果不够形象,还可以用图形来表示:
[plain] view plain copy
<span style="font-size:18px;">>> hold on;
>> plot(testdata(:,1),testdata(:,2),'ro','MarkerSize',12);
>> hold off</span>
上述代码的执行结果如图所示(其中被圆周圈起来的就是我们引入的测试数据):

如果数据是线性不可分的,SVM是否能够应对呢?来看下面的例子,首先,我们生成两组数据data1和data2
[plain] view plain copy
>> rng(1); % For reproducibility
r = sqrt(rand(100,1)); % Radius
t = 2*pi*rand(100,1); % Angle
data1 = [r.*cos(t), r.*sin(t)]; % Points
>> r2 = sqrt(3*rand(100,1)+1); % Radius
t2 = 2*pi*rand(100,1); % Angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
data1和data2是线性不可分的。用图形来表示或许更加一目了然,所以我们来绘图:
[plain] view plain copy
>> figure;
plot(data1(:,1),data1(:,2),'r.','MarkerSize',15)
hold on
plot(data2(:,1),data2(:,2),'b.','MarkerSize',15)
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off
上述代码的执行结果如下:

然后我们把两组数据组织到一起,并加上分类标签‘+1’和‘-1’。
[plain] view plain copy
>> data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;
然后分别用高斯核函数与多项式核函数来进行空间转换,并在此基础上进行基于SVM的分类:
[plain] view plain copy
>> svmModel = svmtrain(data3, theclass, 'kernel_function','rbf','ShowPlot',true);
>> svmModel = svmtrain(data3, theclass, 'kernel_function','polynomial','ShowPlot',true);
下图基于高斯核函数的SVM分类结果:

下图基于多项式核函数的SVM分类结果:

可见原本不可分的数据,现在已经被成功分类了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06