从导数的物理意义理解梯度下降 机器学习中常会用随机梯度下降法求解一个目标函数L(Θ)的优化问题,并且常是最小化的一个优化问题: minL(Θ) 我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯 ...
2017-03-155个开源Python库,点亮你的机器学习之路 机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动提升,如集合工作流,设置数据源,以及在内部部署与云部署的资源之间切换等。 Python 是一款强大的 ...
2017-03-14机器学习常用算法(LDA,CNN,LR)原理简述 1.LDA LDA是一种三层贝叶斯模型,三层分别为:文档层、主题层和词层。该模型基于如下假设: 1)整个文档集合中存在k个互相独立的主题; 2)每一个主题是词上的多项 ...
2017-03-14机器学习中使用的神经网络 这一小节介绍随机梯度下降法(stochastic gradient descent)在神经网络中的使用,这里首先回顾了第三讲中介绍的线性神经网络的误差曲面(error surface),如下图所示。线性神经网络对 ...
2017-03-14一、概述 优点:在数据少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 二、原理 三、文档分类 A,B,C,D..为文档中单词。假设总词汇只有A,B,C,D四种。训练样 ...
2017-03-14机器学习实战之SVD 1. 奇异值分解 SVD(singular value decomposition) 1.1 SVD评价 优点: 简化数据, 去除噪声和冗余信息, 提高算法的结果 缺点: 数据的转换可能难以理解 1.2 SVD应用 (1) 隐性语义索引(latent ...
2017-03-14机器学习实战之PCA 1. 向量及其基变换 1.1 向量内积 (1)两个维数相同的向量的内积定义如下: 内积运算将两个向量映射为一个实数. (2) 内积的几何意义 假设A\\B是两个n维向量, n维向量可以等价表 ...
2017-03-14机器学习实战之Apriori 1. 关联分析 1.1 定义 关联分析是一种在大规模数据上寻找物品间隐含关系的一种任务.这种关系有2种形式:频繁项集和关联规则. (1) 频繁项集(frequent item sets): 经常出现在一起的物品 ...
2017-03-14SPSS中两种重复测量资料分析过程的比较 在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量;一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意 ...
2017-03-13数据分析中的基本指标 1.平均数: 是描述一组数据集中趋势的指标,有很多种平均数,如:算数平均数,几何平均数,调和平均数,加权平均数,平方平均数,指数平均数等。 最常用的是算数平均数 平均数 ...
2017-03-13数据分析中的变量分类 数据分析工作每天要面对各种各样的数据,每种数据都有其特定的含义、使用范围和分析方法,同一个数据在不同环境下的意义也不一样,因此我们想要选择正确的分析方法,得出正确 ...
2017-03-13R语言之数据处理 一、向量处理 1.选择和显示向量 data[1] data[3] data[1:3] data[-1]:除第一项以外的所有项 data[c(1,3,4,6)] data[data>3] data[data<5|data>7]:小于5或大于7的所有项 which(data == max ...
2017-03-13离群值的判断与处理 我们在数据分析的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。 离群值产生的原因大致有两点: 1.总体固有变异的极端表现,这 ...
2017-03-13SPSS数据分析—多维偏好分析(MPA) 之前的主成分分析和因子分析中,收集的变量数据都是连续型数值,但有时会碰到分类数据的情况,我们知道最优尺度变换可以对分类变量进行量化处理,如果将这一方法和主 ...
2017-03-13对应分析方法与对应图解读方法-—七种分析角度 对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。 这里主要介绍大 ...
2017-03-13均值、方差、标准差及协方差、协方差矩阵详解 一、统计学基本概念:均值、方差、标准差 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式 ...
2017-03-12主成分分析(PCA)特征选择算法详解 1. 问题 真实的训练数据总是存在各种各样的问题: 1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显 ...
2017-03-12线性回归与梯度下降算法 1.1线性回归 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为 ...
2017-03-12机器学习基础—梯度下降法(Gradient Descent) 梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是 ...
2017-03-12机器学习:决策树(Decision Tree) 决策树(decision tree)是一种基本的分类与回归方法。在分类问题中,它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。在学习时,利 ...
2017-03-11CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-09