R语言如何导入数据 在使用R的时候,我们肯定需要导入数据,现在总结一下如何导入不同类型的数据: 1.使用键盘输入数据 在导入数据比较少的时候,我们使用这种方法。R中的函数 edit() 会自动调用一个允许 ...
2017-03-04SPSS变量定义 变量是spss分析工具的基础。变量的定义将会影响到具体的数据分析,以下将介绍SPSS中定义变量的方法。 一手动输入变量;二、直接导入已有的数据表格,然后再在变量视图中对其进行编辑。 方法 ...
2017-03-03spss-数据抽取-拆分与合并 数据抽取也成为数据拆分,是指保留、抽取原数据表中某些字段、记录的部分信息,形成一个新字段、新纪录。分为:字段拆分和随机抽样两种方法。 一:字段拆分 如何提取“身份证号 ...
2017-03-03spss-数据清洗-处理重复数据 数据导入之后就需要对数据进行清洗。数据清洗主要是对多余重复的数据筛选清除,将缺失的数据补充完整,将错误的数据纠正或者删除。接下来操作如何将重复数据处理操作。 步骤一: ...
2017-03-03spss频率分析-分类变量频率分析 频率分析主要通过频数分布表、条形图、直方图,以及集中趋势和离散趋势的各种统计量来描述数据分布特征,以便我们对数据的分布特征形成初步的认识,才能发现隐含在数据背后的信 ...
2017-03-03SPSS--描述性统计分析--探索性分析 菜单 除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。 ...
2017-03-03如何在R语言中使用SQL命令 对于有SQL背景的R语言学习者而言,sqldf是一个非常有用的包,因为它使我们能在R中使用SQL命令。只要掌握了基本的SQL技术,我们就能利用它们在R中操作数据框。关于sqldf包的更多信息, ...
2017-03-03SPSS分析技术:两个独立样本的非参数检验 在医学类研究中,经常会遇到治疗效果无法量化,但需要比较不同治疗方法优劣的需求。例如,比较止痛药的效果,疼痛程度无法准确量化,只能用主观打分来描述;理疗复健方 ...
2017-03-02SPSS分析技术:曲线回归 在大量的回归分析中,变量之间的关系都是线性关系,或是能够被转化为线性关系。然而,也存在着许多非线性的关系。例如,在匀变速直线运动中,运动距离与时间之间的关系就是二次函数关系 ...
2017-03-02SPSS分析技术:频数分布;数据的心灵窗户 频数是指某一观察值出现的次数,把观察值及其相应的频数全部罗列出来就是频数分布。例如,可以将我们国家的全部人口按照年龄做出频数分布。频数分布能够帮助我们了解某 ...
2017-03-02SPSS分析技术:描述统计;了解手中的数据,从这里开始 无论是总体数据还是样本数据,描述统计都是了解它们的第一步,因为了解数据是进行进一步数据分析的基础。在统计基础文章中介绍过,描述数据可以从三个维度 ...
2017-03-02SPSS分析技术:探索性分析;强大的综合性描述性统计模块 SPSS还提供了一种综合性的数据描述工具:探索性分析,它能够一次性将上述分析结果和其它更详细的分析结果呈现出来,不能能够输出数据结果,还能提供各种 ...
2017-03-02SPSS分析技术:因子分析;调查问卷的效度分析 在以多个变量测量事物性质的过程中,经常出现多个变量交叉与重叠的情况。例如,在大学课程情况的问卷调查中,我们可以设置几个不同的问题来测试教师的课件制作情况 ...
2017-03-02运营数据分析须掌握的十个经典方法 眼花缭乱的东西很多,真正派上用场的,却不见得是那些看起来炫酷的。很多方法朴实无华,却解决大量的问题。下面十个方法都是我这么多年做互联网运营分析时一定会用到的最经典 ...
2017-03-01数据测量与分析:入门完全指南 在这篇入门完全指南中,我们将探讨分析学中一些基本的方法,以及用户体验测量与分析中的日常工作和交付物。我们也将列举一些常用工具、相关书籍,帮UX 从业者更好地学会收集和分 ...
2017-03-01数据挖掘方法功能和聚类分析案例 一、数据挖掘的常用方法 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行 ...
2017-03-01用户调研、竞品分析、数据分析、行业分析4个方法,轻松挖掘产品需求 一般产品的需求来源,除了老板和其他同事(运营或市场)的业务需求,还可以来自以下几个方面: 1.用户调研 用户调研的手法有很多, ...
2017-03-01数据在四个层面上的价值思考 1、思考一下,数据是什么? “掌握数据就掌握一切”,已经成为大部分互联网公司的基本认识,你只要有用户数据,行为数据,关系链数据,就可以在此基础上衍生出很多新的玩法,新 ...
2017-03-01SPSS分析技术:偏相关分析 相关分析是研究两个变量共同变化的密切程度,但有时出现相关的两个变量又同时与另外的一个变量相关,在这三个变量中,有可能只是由于某个变量充当了相关性的中介作用,而另外的两个变 ...
2017-02-28SPSS分析技术:低测度数据的相关性分析 如果遇到低测度数据,需要判断它与低测度数据或高测度数据之间的相关性,需要根据数据类型以及数据组合之间的关系来决定分析方法,如下图所示: 今天,我们介绍低 ...
2017-02-28PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08