京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:因子分析;调查问卷的效度分析
在以多个变量测量事物性质的过程中,经常出现多个变量交叉与重叠的情况。例如,在大学课程情况的问卷调查中,我们可以设置几个不同的问题来测试教师的课件制作情况,这几个不同的问题都指向课件的制作,它们最后的得分情况也将表现出强烈的相关关系。再比如不同的运动项目的成绩,看似没有关系,但是其实它们用到的核心力量是会有重叠的,铅球和铁饼都会用手部肌肉等。
上面这些例子都有一个特点,就是问卷调查的不同题目得分之间,体育运动的不同项目成绩之间会有交叉和重叠的地方,可以通过因子分析,将这些交叉和重叠的信息提取出来,形成新的变量,称为因子,用这些因子来反映不同项目,不同题目,不同变量之间的内部关系。因子分析可以看作是主成分分析的推广。因子分析通过从众多相关联的变量中抽取少量公因子,起到了减少变量数量的作用,所以和主成分分析一样,也是一种降维方法。
因子分析是问卷等数据收集手段的结构效度分析的主要方法,所谓结构效度是指测量工具对测量对象的测量能力。问卷的效度是指问卷能够测量出某种理论特质或概念的程度,也就是实际的问卷测量得分能够解释理论特质或概念的程度。从其实际应用的视角看,因子分析产生的结果是归纳出测量变量对潜在属性的描述,从而实现了对测量性质准确性和测量结果正确性的描述,因此,因子分析能够检验问卷效度。
因子分析和主成分分析
主成分分析只是因子分析的一个提取方法,因子分析除了可以用主成分分析提取公因子以外,还能使用其它的方法,SPSS提供的因子分析方法有:
因子分析的数学模型
现在有k个样本,每个样本由n个变量来描述,这n个变量之间有较强的关联性。如果每个变量都可以用m个(公因子)解释,则可以表示为:
因子分析模型需要满足以下几个条件
2、公因子的均值为0;
3、公因子与特殊因子之间不相关;
4、公因子之间互不相关;
5、特殊因子之间也不相关;
对因子分析中抽取的公因子,需要观察它们在哪些变量上的载荷较大,并据此说明该公因子的实际含义(公因子命名)。然而,得到初始公因子模型后,因子载荷矩阵往往比较复杂,不利于因子的解释。这时必须通过因子旋转,使得载荷矩阵中的各元素数值向0和1两个极端分化,同时保持同一行中各元素的公因子方差不变。这样,通过因子旋转,各变量在因子上的载荷更加明显,有利于对各公共因子给出更加明确合理的解释。旋转的方法有正交旋转法、斜交旋转法,最大方差法等,比较常用的是最大方差法。
与主成分分析一样,在抽取公因子以后,还可以用回归估计等方法求出因子得分的数学模型,将各公因子表示成变量的线性形式,并进一步计算出因子得分,从而解决公因子不可测度的问题,实现对样本进行综合评价的目的。因子得分函数为:
因子分析中的旋转
在因子分析中,理想的情况是某一主因子仅在某几个观测变量上有较强的载荷,而在其它观测变量上的载荷值很低,这样就可以直接使用这几个观测变量的综合语义来描述该主因子。然而,在某些情况下,主因子在各个观测变量上的载荷是均衡的,很难直接从观测变量中抽取出主因子的语义。在这种情况下,为了使观测变量对主因子的描述更为集中,可以通过坐标轴的空间变换来改变主因子,使得每个主因子都可以对应各自的一组描述变量,这种变换使几何空间上的数据点更加贴近新的坐标轴,从而使观测变量因不同的主因子而被区分开。这就是旋转变换的概念。
对于因子分析中的载荷矩阵,在经过旋转变换后,如果主因子之间仍保持不相关的关系,则称之为正交变换;如果允许主因子之间存在一定的相关性,则称之为斜交变换。
范例分析
为提高公司员工的工作积极性,某公司人事部对公司的员工做了一次工作积极性影响因素的问卷调查,问卷包括40个问题。
总共回收了752份问卷,对这些数据进行因子分析,分析影响员工积极性的因素有哪些,并分析该问卷的结构效度的优劣。

分析步骤
1、选择菜单【分析】-【降维】-【因子分析】命令,打开因子分析对话框,进行下图操作;打开【描述】选项,将原始分析结果,KMO和Bartlett球形度检验选中。
2、点击【抽取】,打开下图的对话框,进行如下选择;
3、打开【旋转】,【得分】和【选项】按钮,打开对话框,进行如下选择;点击【确定】,输出结果。
结果解读
1、KMO和Bartlette的检验
由于KMO值为0.944,表示原始变量之间相关性很强,非常适合做因子分析;Bartlett检验的 Sig值为0.000,同样说明数据适合做因子分析。
2、总方差解释
只有前8个公因子的特征值大于1,所以系统默认提取前8个新变量为公因子。从表格中还可以知道,前8个公因子对总方差的解释量为65.345%,低于精确解80%以上的总方差解释量要求,但是在社科领域,60%以上的解释量,还是可以作为参考信息进行下一步解释的。
3、碎石图
从碎石图也可以看出,从8号公因子以后,斜率就非常的平缓了。
4、成分矩阵
所有成分矩阵都是按照因子系数大小排列的,并只显示绝对值大于0.35的系数。从表格中可知,第一个因子在40个变量中的38个都有载荷,这样不便于对提取的因子进行解释,因此,通过因子旋转,使因子载荷两极化。
5、旋转后因子载荷矩阵
坐标旋转以后,表格就变成了上面的形式,这样不同问题的因子归属就明确了,这时,就可以根据因子在哪些变量上有较高的载荷而对因子进行命名。例如,因子1反映的是工作伙伴和团队成员的合作,因此可以命名为团队合作;因子2反映上级经理管理水平。
从上表还可以看出,该问卷通过因子旋转共获得8个因子。这些因子中,最少的包含3个问题,最多的包含6个问题,且在这些问题上的因子载荷介于0.403到0.830之间,都大于0.35的最小可接受值,这说明该问卷的结构效度很高。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04