
SPSS分析技术:两个独立样本的非参数检验
在医学类研究中,经常会遇到治疗效果无法量化,但需要比较不同治疗方法优劣的需求。例如,比较止痛药的效果,疼痛程度无法准确量化,只能用主观打分来描述;理疗复健方法的优劣也无法量化,只能通过病人的情况粗略划分成卧床,部分自主等层次。当遇到这样无法量化数据的比较要求时,应该如何进行比较呢?两个样本的非参数检验是合适的分析方法。下面将介绍两个独立样本的非参数检验方法。
两个独立样本的非参数检验
单个样本的非参数检验对比的是样本分布与已知分布,从而得出随机样本所代表的总体是否服从已知分布。两独立样本的非参数检验是对两个独立样本的分布情况直接进行对比,目的是获得关于两总体分布状况差异大小的信息。这与单个样本假设检验和两个样本假设检验是一个套路。
SPSS提供了4种检验方法:Mann-Whitney U检验(曼-惠特尼U检验)、K-S检验、Wald-Wolfowitz检验(随机序列检验)和Moses极端反应检验。它们的原假设都是两个样本来自的总体分布没有显著性差异,只不过它们的分析方法不同。
Mann-Whitney U检验
Mann-Whitney U检验又称Mann-Whitney秩和检验,可用于对两总体分布的比例判断。其原假设为:两个独立样本来自的两个总体的分布无显著差异。Mann-Whitney U检验通过对两组样本平均秩的研究来实现判断。
Mann-Whitney U检验原理:将两个样本混合后按升序排列,得到每个样本值的秩(排名),然后分别求得两组样本的平均秩,并对这两个平均秩进行比较。如果两个总体分布无显著差异,其秩应该差别不大,从而两组样本的平均秩差别较小;反之,若两总体差异显著,则二者的平均秩会有较大差异。此外,Mann-Whitney U检验还要计算样本A的秩大于样本B的秩的个数U1,以及样本B的秩优于A的秩的个数U2,如果总体分布无显著差异,则两者应该接近;反之,若两总体差异显著,则二者的平均秩会有较大差异。
两独立样本K-S检验
检验原理:首先将两独立样本的数据混合并按升序排列,然后分布计算两个独立样本秩的累计频率,并求得两个累计频率的差值序列数据以获得D统计量。SPSS将自动计算D统计量的概率P值,如果P值大于显著性水平,则接受原假设;反之,则拒绝原假设,即两个样本来自的总体分布差异显著。
两个独立样本Wald-Wolfowitz检验
将两组样本混合并升序排列。同时,两组样本的每个观测值对应的样本组标志值序列也将随之重新排序,求出此游程。如果所得游程数较小,说明两总体的分布差异较大;反之,则不存在显著性差异。同时SPSS将据此自动计算相伴概率P值,如果P值大于显著性水平临界值,则接受原假设;反之则拒绝原假设,即两个样本来自的总体分布差异显著。
两独立样本Moses极端反应检验
原理为:将一组样本作为控制样本;另一组作为比较样本。一般按升序排列的第一个值定义控制组,第二个值定义比较组。以控制组作为参照,检验比较组相对于控制组是否出现极端反应。为此,将两组样本混合并升序排列,求得控制样本最高秩次和最低秩次之间包含的观测值个数,即跨度,以及去掉两个极端值后的截头跨度。如果跨度和截头跨度都很小,说明比较样本可能存在极端反应,两总体的分布差异显著;如果比较样本没有出现极端反应,则两总体分布无显著差异。
范例分析
现在由一份运用药物治疗和物理治疗方法对中风患者治疗结果的数据,治疗结果被分成5各层次:正常、可以自主活动、部分肢体可以自主活动、卧床和无自理能力;总共记录了100位患者的治疗效果,需要分析两种治疗方法的结果是否有显著性差异。
分析步骤
1、选择菜单【分析】-【非参数检验】-【旧对话框】-【2个独立样本】,在跳出的对话框中,做如下操作,然后点击确定。
2、或者也可以选择【分析】-【非参数检验】-【独立样本】,跳出如下对话框:
在字段页将生活行为能力选为检验字段,将治疗组选为组;在设置页选中所有4种两个样本的非参数检验方法。最后点击运行。
结果分析
两种操作方式的计算结果是一致的,由于第二种操作的显示结果是综合显示,所以选取第二种操作的显示结果进行讲解。
从结果可知;K-S检验和Wald-Wolfowitz游程检验的结果是接受原假设,即两种治疗方法的效果没有显著性差异;Moses检验和Mann-Whitney U检验的结果是拒绝原假设,即两种治疗方法的效果有显著性差异;所以,不同的检验方法可能会有不同的结论,这也说明了非参数检验是一种近似的检验方法,提示我们一定要根据数据的性质和检验方法的侧重点合理的选择检验方法。
可以对比不同的检验方法原理,Mann-Whitney U检验常用判别两独立样本所属的总体是否具有相同分布,Moses检验和K-S检验主要用于检验两个样本是否来自相同总体,所以本题中,建议选择Mann-Whitney U检验的分析结果,即两种治疗方法的治疗效果有显著性差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15